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Abstract

Angle Resolve Photoemission Spectroscopy (ARPES) experiments provides a map of

intensity as function of angles and electron kinetic energy to measure the many-body spectral

function, but the raw data returned by standard apparatus is not ready for analysis. An image

warping based distortion correction from slit array calibration is shown to provide the relevant

information for construction of ARPES intensity as a function of electron momentum. A

theory is developed to understand the calculation and uncertainty of the distortion corrected

angle space data and the final momentum data. An experimental procedure for determination

of the electron analyzer focal point is described and shown to be in good agreement with

predictions. The electron analyzer at the Quantum Materials Laboratory at UBC is found to

have a focal point at cryostat position 1.09mm within 1.00 mm, and the systematic error in the

angle is found to be 0.2 degrees. The angular error is shown to be proportional to a functional

form of systematic error in the final ARPES data that is highly momentum dependent.
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Chapter 1 Introduction to Angle Resolved Photoemission Spectroscopy

Angle resolved photoemission spectroscopy (ARPES) is a powerful experimental probe

of the elementary excitations of electrons in solid-state materials. At the most basic level it is

a procedure of illuminating a material with energetic photons, and studying the angular and

energy distribution of electrons that come out of the material surface. Some of the properties

of electrons that are ejected from the sample material are directly related to the properties

those electrons possessed in bound-states of the material, and this information can be

extracted in this type of experiment. ARPES allows us to better understand the properties of

the electrons in materials.

The fundamental parameters of detection in ARPES exist in a four-dimensional object,

which is a map of intensity as function of two angles and kinetic energy. Intensity in this

experiment is a function formed by the many body spectral function weighted by a Fermi

Dirac distribution, and the probability function formed by the square of the matrix element of

the interaction Hamiltonian with the many body initial and final states1. In the case where the

spectral function is analytic, first order perturbations show that the many body spectral

function is analogous to a renormalized single-particle spectral function2,and in this situation

ARPES intensity is proportional to the single-particle electron density of states with some

shifts and broadening brought about by the perturbation of many-body interactions.

The cross-section for the absorption of photons depends on the material and the photon

energy, but of even higher importance to ARPES is the electron mean free path in the

material. In practice, it is always the case in an ARPES experiment that the electron escape

depth is the limiting factor in the detection of photo emitted electrons from the bulk material.

Studies have been done to show that the escape depth of electrons varies with photon energy,

and that in the range of angle-resolved ultraviolet photoemission the escape depth is about

five to ten angstroms3.For this reason, ARPES is generally considered to be a surface-

sensitive technique that largely probes the electron energy states that occur in spatial vicinity

to the material surface.

1 Damascelli, A. 2004. Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta
T109: 61-74.
2Mack R. A Guide to Fevnman Diagrams in the Many-Body Problem. Dover, 1992.

Huether, S. Photoelectron Spectroscopy. Springer Verlag, 1995.
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In any surface-sensitive experiment, it is important to perform measurements on a

surface that is very clean and flat. This is because any impurities that have adhered to the

surface have essentially changed the material composition and possibly affected the energy

states that the experiment will probe. In addition, any inhomogeneity of the surface will result

in the detection of electrons that can be considered to have come from a superposition of

different surface orientations which will significantly reduce the resolution of the experiment.

Surface inhomogeneity can also lead to disruption of the electron energy states (reference)

from that of the flat surface. In performing ARPES, it is important to study a material surface

that is as close to being atomically flat (reference) as possible, and in order to reduce

impurities it should be done in a high vacuum environment3.

Among the most interesting and useful quantities obtained in photoemission

spectroscopy is the photoelectron emission angle, which is the angle at which the electron is

ejected from the material, relative to its surface. The emission angle can be used to determine

the in-plane crystal momentum of the electron in the sample material, due to the invariance of

translational symmetry across the sample surface of the component of momentum parallel to

the surface1.

This can be seen to be a special case ofNoether’s thereom, which proves that when a

quantity invariant under a transformation occurs in the Hamiltionian, the corresponding

generalized conjugate momentum is conserved4.For the photoemission problem, the

Hamiltonian contains a spatially varying potential V(x, y, z) which describes the crystal bulk,

surface, and vacuum. If we take the perfectly flat material surface to lay in the y-z plane, then

inside the material the potential obeys relation,

V(x,y,z) = V(x,y + r,z + r)

for any direct lattice vector f = m, + r l. This symmetry is not present along the

coordinate x because of the discontinuity of the potential at the material vacuum interface. It

is a well known that the infinite periodic potential in the crystal allows the solutions of Bloch

states for the electron wave equation, hence the designation of crystal momentum to

parameterize these states. The essential use of Noether’s thereom for photoemission is to

‘ Goldstein, H. Classical Mechanics (3fl Edition). Addison Wesley, 2001.
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recognize that the y-z plane translation symmetry means that the momentum analog in the

Hamiltonian, the crystal momentum, is conserved for the y and z coordinates but not for the x

coordinate. Once the electron has left the material and entered the vacuum, the freely

propagating electron has momentum and kinetic energy given by,

Neither of these quantities is equal to the electron momentum and energy when it was

inside the crystal, because while k and k are conserved across the interface, k is not. In

addition to momentum, there is energy conservation for photon hu and material work function

in the non-interacting picture’ where one strictly considers elastic processes.

= hu — — IEBI

As result of momentum and energy conservation ARPES probes the spectral function in

the k-k plane of the reciprocal crystal - but the detected kinetic energy is not independent of

k, and the measured k of the emitted electron is not the same as for the electron in the solid.

Full knowledge of the crystal momentum can be put together with energy detection of

the electrons in order to gain information on the single-particle band structure. Since the

component of momentum perpendicular to the material surface is not conserved, this is

sufficient reason restrict the general discussion to materials that possess a highly anisotropic

electron overlap and can be considered to have no energy dispersion in one dimension. This

is the class of two dimensional electronic materials, mainly composed of three dimensional

crystals that have very weak coupling in one direction’. While ARPES can produce valuable

insights into the nature of fully three dimensional electron systems, these must often proceed

somewhat differently on a case by case basis due to the basic spatial symmetry of the surface

and the complex differences in single-particle excitation spectrums and band structure for

each material. The discussions and procedures developed in this work are primarily intended

for study of two dimensional electronic materials and the scope will be limited to such

materials.
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Further discussion of the results of ARPES are not necessary at this point, because the

wealth of information one can obtain from this probe of the many-body system is truly the

endpoint of this work, and the pieces will be included as needed for the complete discussion.

In order to obtain information on material’s Fermi surface or other interesting material

physics, a significant amount of pre-analysis treatment and calculations is vital. In real data

acquisition, the raw data is not ready for analysis. The subject of this project is to completely

describe and quantify the extraction of relevant information. This will take place via the

transformation of the raw image data acquired in an ARPES experiment to a corollary

rendered form - with well defined parameters to describe accuracy and precision.

UBC ARPES Chamber Experimental Apparatus

The experimental basis of this work utilized the facilities at Quantum Materials

Laboratory in the Brimacombe Building at the University of British Columbia. Of specific

interest to this body of work is the component of the Quantum Materials Laboratory facility

that is specifically designed for ARPES, in addition to calibration apparatus and other analog

machinery and digital devices that serve a complementary function to the ARPES experiment.

Details about these components can be found in appendix A.
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Chapter 2 Practice of Angular Distortion Correction

The Phoibos 150 hemispherical analyzer is equipped with both straight and curved

entrance slits. The primary focus of this work is based on the use of an entrance slit that has

twice the curvature of the hemisphere, which is a feature that is intended to compromise

between energy resolution and electron lens distortion. The reason for this is that it simplifies

the way in which electron impact events are detected by reducing the curvature of iso-energy

contours on the ccd camera images. This is greatly simplifies the pre-analysis correction of

ARPES data, although it results in somewhat reduced resolution because of the broader

distribution of electrons across the hemispherical capacitor entrance.

One important implication of this entrance slit configuration is that the axis of energy

detection on the phosphor screen as seen by the camera system is made to be as straight as

possible. This situation can be described as “distortion-free” energy detection (DFED), where

iso-energy contours on the ccd camera form lines parallel to one axis of the square ccd pixel

array. DFED is a useful tool to simplif’ the analysis of raw images from the detection

system, because it eliminates the need to parameterize energy contours.

In the DFED, the energy-axis is as close to straight as possible, but the trajectories of

iso-angle contours (IAC) are not parallel to either axis of the ccd array. The deviation of the

IAC parameterization from the line parallel to the axis of the ccd array which is perpendicular

to the DFED axis is typically described as angular distortion, and the process by which this

complication is resolved is referred to here as distortion correction.

The approach to achieve distortion correction in this body of work started with

quantification of the angular distortion, proceeding first with the parameterization of iso-angle

curves as a function of energy. This requires a special kind of experimental configuration, to

achieve well-defined IAC on the ccd camera. This experiment is readily done in the UBC

ARPES system, with a built-in slit array that can be placed in front of the analyzer entrance, a

vertical tungsten wire on the lowest part of the cryostat, and an electron gun. The experiment

involves bombarding the tungsten wire with electrons of a broad energy range much larger

than the energy range passed into the analyzer.

The tungsten wire is an almost perfect point source for the analyzer’s angular

acceptance of electrons that are scattered or emitted from the wire, since the difference in

angle from either side of the wire is negligible. The photoelectrons enter the analyzer through
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the slit array, which has twenty one slits of size 0.13mm, which are spaced 1mm apart, cut

into a flat aluminum disk and oriented perpendicular to the angular acceptance of the

analyzer. Conducting this experiment allows the direct detection of IAC. There are several

other parameters involved, though, including the position of the wire, the position of the slit

array, and the position of the electron gun.

The ideal geometry has the tungsten wire is exactly on the optical axis, defined as the

axis that passes through the center of the analyzer entrance and is normal to the plane of the

entrance. In addition, the electron gun should illuminate the position on the wire that forms

the perpendicular intersection of the wire and optical axis, and the center slit of the slit array

should be centered on the optical axis. For a number of reasons, however, the likelihood of

this situation occurring exactly is minimal, and some offset in these positions is inevitable.

This will introduce some experimental errors, which will be quantified in the next section.

Distortion Correction from Slit Correction Data

The underlying principle of distortion correction is that intensity values occur at the

incorrect position on the ccd camera from the perspective of data analysis, and reassigmnent

of the intensity to new positions is needed for the attribution of physical information such as

momentum and spectral density. The best solution to this problem is to find a way to

accurately move the intensity to new positions that are determined in the coordinate space in

which the detection quantities of angle and energy form perpendicular axes. This solution is

useful primarily because it renders the detected information in a space where the variables of

detector angle and kinetic energy are parameterized by independent mutually perpendicular

directions which are coincident with the directions that define the symmetry of individual

detection elements, or pixels, in relation to one another on the ccd camera. This ideal

situation, referred to here as image parameter orthogonality (IPO), greatly simplifies the

analysis of data, because it allows the immediate interpretation of ARPES data as intensity as

a function of angle and kinetic energy. IPO allows the straightforward use of ARPES data to

construct additional physical quantities such as electron momentum, Fermi velocity, and self

energy, whereas the raw images acquired on the detector in an experiment are not readily

interpreted in this way even with DFED, because of the unknown energy dependence of the

detector angle.

To attain ARPES data with IPO from the raw detection images, an accurate function is
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needed which parameterizes the new positions of the intensity function by the original

positions. This function is a map from old coordinates to new ones, in such way that the

correct position of each intensity value on the ccd camera can be calculated from the original

positions accompanying the intensity of the raw image, once the mapping function is known.

To obtain the mapping function, however, very specific quantitative information must be

collected from slit correction data (SCD) taken in a suitable experiment with the slit array,

and it must be done in such a way that it remains valid for application to a separate ARPES

experiment done on a material surface of interest.

A successful calibration experiment will produce data like that shown in figure 2.1,

containing the positions of L&C. In the case of DFED, each column of a detector image that

corresponds to a single kinetic energy can be treated separately in the quantification of

angular distortion.

Figure 2.1. The raw data from a slit array calibration experiment. The left to right
direction is parallel to the energy axis, while the up to down direction is roughly the
angle axis. If the angular axis is straight, then the lines will be straight, so angle
distortion is apparent in the curvature.
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Figure 2.2. Selected iso-energy cuts of the slit correction data, labeled by ccd energy axis

column number. These are functions of intensity and are plotted versus the ccd angular

axis. The angular distortion can be quantitatively characterized from the peak positions

in each energy cut.

In the slit correction data, for each column we have a number of positions less than the

column size, which coincide with electron emission angles. The known peak positions come

from the IAC that pass through the column, as seen in figure 2.2, and the SCD column with

peak positions contains sufficient information to characterize angular distortion.

The destination coordinates for the IAC lay on a linear angle axis described by an offset

and slope. The slope is the rate of change of pixels on the IPO image with changing detection

angle of electron emission, and can be defined as y in units of pixels per angle. The offset

corresponds to merely shifting all of the final coordinates by some constant. In terms of the

detector images, y will produce a stretch/shrink along the ccd axis perpendicular to the energy

axis, while the constant will simply translate the image along this direction. For this reason,

the constant is irrelevant to the transformation and we can take it to be zero.

The instantaneous slope of the function that returns the angle at each pixel in the
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original image is both a function of energy and angle in our system. For the final coordinates

y can be chosen to be anything, since the final image has a linear angle axis and because

pixels are not a physical quantity - they are only meaningful in their relation to the physical

quantities of angle and energy. An appropriate and reasonable choice of y corresponds to the

number of pixels per angle in the center of the SCD image, with the number of pixels between

the largest and smallest peak positions for the center column divided by the angle between

these two peaks. In this way y is chosen to be close to the average pixel per angle ratio of the

raw ARPES data, but it should be realized that this is only a matter of convenience and does

not have any effect on physical information contained in the image.

Briefly it should be mentioned that choosing y that is very small compared to the

intrinsic resolution of the ARPES system will result in data that displays a lower resolution

than what is possible. If y is instead chosen to be very large, this will give an angle axis that

has much smaller interval spacing than could possibly be resolved, though the intensity data

itself would show this. These are extreme cases, however, and as long as y is assigned in the

reasonable way described, there will be no significant effect on final data resolution from this

parameter.

The pixel per angle parameter can be determined readily due to its minimal effect on the

quality of the final data, though it still remains that this parameter alone is insufficient

information to complete the distortion correction. Additionally, the determination of the final

positions requires knowledge of the central positions that correspond to electron propagation

along the optical axis. The approximation scheme for obtaining this information, and the

evaluation of the final positions will be the subject of the next chapter.
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Chapter 3 Calculations Near Ideal Geometry

The SCD can be used to quantify the axis of the detector angle. This section will

demonstrate that it is possible with the UBC ARPES system to observe clear signature of the

geometry which yields the most accurate quantification of the detector angle axis, and we can

describe the way in which the experimentalist can interpret these signatures as indications of

the proximity of the sample and slit array to the ideal position when performing an

experiment. It will be assumed in the calculation that the ARPES experiment is executed with

the sample or point source close to the focal point of the analyzer. Additionally there will be

an assumption of known offset of the slit array which is zero when an odd number of IAC are

present in the SCD image, and is half of the inter-slit distance when an even number of JAC is

present.

This is equivalent to assuming the JAC nearest the center of the SCD image represent

the positions that would be exact if in the ideal configuration, and is referred to as the nearest

central iso-angle contour approximation (NCIACA). To assess the accuracy of these

assumptions, this work will additionally examine the errors introduced which originate from

the positions deviating from those that are assumed. In doing so, the calculation of detector

angle will carry a quantifiable error that will lead to the refinement of the experimental

procedure to reduce these errors.
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Illustration 3.1. The slit correction experiment geometry, showing the interdependent

variables that quantify the positions and angles. Two positions, x and y, describe the

point source, o- describes the slit array position, and D is given by the analyzer setting.

The rest of the parameters are resultant from the fundamental parameters x, y, o, B.

To mathematically describe the effect of sample and slit array positions on the SCD, the

configuration of illustration 3.1 is used. At this point it is simplest to consider the slits to have

infinitesimal width, though this idealization will be lifted later. o- is the offset of the center of

a slit from the optical axis. This offset should be taken to be less than or equal to half the slit

spacing in absolute value, since there are more slits on the slit array than are visible in SCD

images in any angular analyzer mode, and we can take the slit array to be infinite along the

direction of detector angle. LA is the distance from the point source to the analyzer entrance,

Analyzer Entrance

I D

Slit Array —

I
y

Electron
Beam

Electron Point
Source
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L is the distance from the point source to the slit array, D is the size of the effective electron

acceptance of the analyzer, d is the inter-slit distance, and fmally y is the distance of the point

source along the direction parallel to the analyzer entrance slit from the focal point in either

the positive or negative direction as defined by illustration 3.1 . The variables y and o

quantifr deviation from the ideal case embodied by the NCIACA. The parameter D is a

property of analyzer lens mode, since different angular modes accept different solid angles of

electron emission. D can be deduced from the manufacturer specifications for the solid angle

of acceptance of a given lens mode and position of the electron lens focal point relative to the

optical axis.

In the case where the SCD is taken in the ideal geometry, the angles are very well

known by the geometry of the arrangement of point source and slit array with respect the

analyzer entrance and optical axis. The detector angle axis can be closely determined if

positions are close to the ideal geometry, but in order to quantifi the amount of approximation

the ideal case must be compared with the more realistic case of non-ideal positions.

On the SCD image, there are a set of IAC that show the ccd positions corresponding to

specific angles, but the values of the angles are not known. In particular we need to know the

electron emission angle spanned between the most extremely placed IAC visible, as this is

enough to determine y and will facilitate the creation of the detector angle axis. In the ideal

geometry, the extreme IAC on either side of the one (odd number of IAC) or two (even

number of IAC) central IAC is symmetric on the detector angle axis, but in general there is

some asymmetry when the positions are not ideal.

There are two angles shown in illustration 3.1, 8 and 8_, formed by the construction of

two right triangles with shared base along the optical axis, which span the angle on either side

of the axis that coincides with the angular acceptance of the analyzer defined by D and LA.

The angles 8, 8_, and 8 are given by,

D

8± = tan1
LA

D D

8 8 + 8_ = tan’ + tan1 (3.1)
LA LA

When the slit array is placed in front of the analyzer entrance, a set of IAC are selected.

12



The angle between the extreme IAC is not 6 in illustration 3.1, but rather 6’. This effect is

best quantified by counting lines. If there are n1 slits to the left of the slit nearest the point

source, for which emission angles are less than or equal in absolute value to 81, then the

magnitude of the distance between the extreme slit and slit nearest the point source is,

4 = n1d

6 ‘± 8 ,where these angles are taken to be positive, because the slit array passes

electron emission angles only within the effective analyzer acceptance region, so that,

D
Ffl-1-d+O’l

____

tan [ —

j tan1
L LA

— LA

Rearranging this relation produces,

1 L D
nl±

The number of slits that are passing electrons visible in the SCD is an integer, so long as

we neglect the slit width. Even in the real experiments, as long as the the entire IAC is visible

in the SCD image, and not just a fraction of its finite width, we can consider n± to be integers.

This constraint means we can turn the inequalities into exact equations that utilize the floor

function. For instance, if the inequality states that n+ must be less than or equal to 12.7, then

it is know that n is equal to twelve, because all of the slits within -C from the point source

will pass electrons with emission angles that correspond to arrival at the analyzer in the

effective acceptance range. This means we can write,

1 L5 D
= Floor

±
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Here, the floor function is defined as the function that gives the largest integer less than

or equal its argument. With n± we can calculate 8’.

Ffld—O-1 rn_d+oi
8 E8+8_ =tanl[ ]+tan[ j (3.2)

L Ls

This equation is elucidated by rewriting n± as,

L5D L5
n Floor [Floor

[2dLAI
+ A ± ±

= Floor + Floor [z\ ± ±

LsD [LED
A

= 2dLA
— Floor

[2dLA

Ls a-The condition for a change to occur in is that the quantity A ± ± will equal

an integer. Additionally, due to the definition as a difference between a quantity and its floor,

A < 1 and Floor[AJ = 0. Defining n to be the portion ofn that is independent ofy or o’,

[LsD
n Floor i

L2dLA

F L 01
n÷ - n + Floor A ± —y ± —I (3.3)

i dLA di

It is clear that when y and o are equal to zero, n equals n_, and when they are

nonzero, n and n_ will not change at the same values ofy and o- unless A is zero. This

implies that when is equal to or slightly larger than an integer, A is close to zero, and

there is high symmetry between n and n_. This is an interesting result, because the

parameters used to calculate A are dependent on chamber construction and analyzer lens

mode only, so they are essentially fixed numbers in an ARPES experiment. Therefore to the

extent that these parameters are known, the symmetry ofn will be known with respect to y

and o’.
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Approximations for the Angle Between Extreme Iso-Angle Contours

Returning to the original assumption of ideal positions, we can now calculate the angle

between the extreme IAC, and compare with the exact formula derived in the last section.

There are two instances of approximation that must be considered separately. In one case the

number of IAC in the SCD is even, and in the other it is odd. If we have an even number of

IAC then the position between the central two IAC is taken to correspond to the optical axis,

the slit array offset is assigned to o- = d/2, and y = 0 is used since it is assumed that the

point source is on the optical axis. In this situation the exact calculation reduces to,

F 1
n= n+Floor[A±

8’ = taif1 [_( + Floor [A +
—

+ tan1 [_( + Floor [ —
+

This suggests the defmition,

n E ( + Floor [A ±

Fn*+ di [n d
8’ = tan1 I I + tan1

LLsi LL5

The allowed values are in the range 0 iX< 1, in which n and n are equal. To show

this, take A < 1/2,

/ 1’ 1
nZLE

(n_1+)=n_

ForA 1/2,

/ 1\ 1
n

/ 1,. 1
nE

Both n have a discontinuity at A= 1/2 where ajump occurs with the size of one. This

shows that depending on the size of A, it is possible to have either 2n — 1 or 2n + 1 IAC
15



present in the SCD, but the ideal assumptions of zero for y and a’ has resulted in the number

of L&C changing by two across the point of discontinuity. The SCD image will show these

lines symmetrically on either side of the image. In the case where the user of the UBC

ARPES chamber is changing the position of the point source along the optical axis, this would

result in two IAC appearing or disappearing on either side of the SCD image at the same time,

as the parameter A passes through the discontinuity point as a function of L and LA.

Now the additional situation must be addressed, in which there are an odd number of

IAC in the SCD image. For this case, the NCIACA proceeds by setting both y and a’ to zero.

This leads to modification of the equations for n In the “odd” case there is no a’, so that

there is no longer any difference in of n.

= n = n + Floor [A] = n

In this case it is apparent that the discontinuity still results in two lines appearing or

disappearing at the edge of the SCD image, though it will occur when A = 0 via the definition

for n, which is the same as A infinitesimally close to one.

It may be useful to understand the situation where the discontinuity ofn occurs when

moving the point source along the optical axis, in that the implementation of assumptions of

the NCIACA will cause this movement to appear differently in the SCD image than in the

general case. We are interested in the trend in the discontinuity position, which gives a clear

signature in the SCD, as a function of the optical axis position relative to the focal point, and

at this junction we try to understand this trend within the NCIACA. To simplif’ the equation

for A, it can be rewritten in tenns of unitless parameters.

/f._+ X” F ‘P_+ %1 D L5 X
)_Floor[CJ(,, )j ; aE—,pE—,E—

2d LA LA

The variable x is the distance along the optical axis, as shown in illustration 3.1. In

terms of the unitless parameters, some examples of the function A can be plotted for different

values of a (representing different lens modes) to get a general idea of the trend in the

discontinuity position. p can be fixed to 3 2/40 for this discussion, because this number is

given by the geometry of the UBC ARPES chamber, in addition to X = x/40 with x in
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millimeters.

Table 3.1 Discontinuity Positions of Delta for Several Analyzer Modes

Analyzer Angular D ci (d=1mm) Delta Discontinuity Position

Mode Acceptance Nearest the focal point

(y,even!odd)

HAD ±3° 4.19262 2.0963 1 -0.296907, -0.61757

LAD ±7° 9.82276 4.91138 -0.304032, 0.0777874

WAM ±13° 18.4695 9.23473 0.0646891,-0.173525

Figure 3.1. Functional form of i based on the previous derivations in this chapter. The
discontinuity positions in table 3.1 are visible as curves passing through 0.5 for slit
correction data with an even number of iso-angle contours, or when reaching the value
of 1 if there are an even number of iso-angle contours in the slit correction data.

The angular acceptance of the WAM, LAD, and HAD lens modes of the Phoibos 150

are specified by the manufacturer and are given in table 3.1. The ideal solid angle of analyzer

acceptance can be determined from equation 3.1 with y = 0 and LA 40mm as specified by

SPECS. From this the value of D can be determined, as well as ci, for which results are also

given in table 3.1. Table 3.1 and figure 3.1 provide specific information for the symmetric

Discontinuity Trend Along Analyzer Axis

HAD

LAD

WAM

—0.4 —0.2 0.0 0.2 0.4

x

A =0.5
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IAC appearance as a function of x.

Deviation of Point Source Position from the Optical axis

Returning to the general equation 3.3, the results of the previous section can be

expanded to address the SCD image symmetry and the observable effect of moving the point

source along the optical axis in the situation where the ADP are arbitrary. Two special cases

will be examined, for which one of the ADP is fixed at the value of the NCIACA, and the

other is varied. This will be done for both odd and even total IAC. Afterward a general case

will be derived in which both ADP are variable. The focus in this work is in looking for

values of the ADP where both n and n change at the same time when varying the point

source position along the focal point, as this gives a clear signature in the SCD. This section

will clearly elucidate the best method for the experimentalist to position the point source and

slit array in order to approach the ideal positions of the NCIACA.

In the case of variable y with fixed o, the even and odd cases will be similar to the last

section, except that can be considered to take on an effective offset of size
—

y. This can

be seen in the modified equations for the effective number of IAC,

Even # of TAC Odd # of IAC

= ( + Floor ± dLY ± F = (n + Floor ±
Al)

There will be an integer jump in n as the argument of the floor function approaches

one. However, the jump does not occur at the same value of for both n and n. This is

because of the effective offset introduced by y. Generally, change in the position x will not

give a symmetric set of IAC entering or leaving the SCD image on either side because of this

offset, though it is interesting to note that for special values of y the symmetric IAC entering

with x situation would occur. This is the case where,

Even # of IAC Odd # of IAC

L5 1
1X+—y=i

dLA 2 dLA
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L5 1
— — — = IdLA 2

Ls
1y =1

u LA

with i and] integers. Reducing the equations by eliminating gives,

Even # of IAC

(i
— I — 1) dLA

2

Odd # of IAC

(i _]) dLA
2 L5

The symmetric IAC jump is effectively a signature of these special values of y when cr

is assumed to be the NCIACA value.

The next situation has variable o with fixed y. The equations for the number of IAC

becomes,

n± (n+Floor[±9]f)

This holds for the even and odd case, though in the even case o- = 1/2 is the NCIACA

value, while it is o = 0 for the odd case. Here again there is an offset parameter in the floor

function, and we can go straight to the symmetric IAC change condition,

(i _])

2
d

In this case, however, o is only used within the range — d/2 a- d/2, so that the

difference in i and] is no more than one in magnitude. With this result, the symmetric IAC

change is seen to occur with change in x when,

d d
a- =

with y is assumed to be the NCIACA value. This is very useful, because if the point

source is at the focal point of the analyzer, then the symmetric IAC change condition requires

that the slit-array offset ADP is equal to the NCIACA value, enforcing the validity of this

approximation once the focal point has been reached.
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Finally, we can expand this treatment to be useful in the general case with both ADP

parameters variable. Returning to equation 3.2 and proceeding in the same way as in the two

special cases gives the result and representation with unitless paremeters,

(ij) L5 Y 0’ — —

2 = () +0’

In the general case the symmetric IAC change is seen to occur for special cases of the

combination of the two ADP, in such a way that they combine to form a half-integer. If we

use in as an integer, we can write this condition as,

1 in
(3.4)

This does not directly enable the experimentalist to set the ADP to the NCIACA values

when the symmetric IAC change SCD signature is obtained, because at best there is only

knowledge of the interrelation of the ADP. Unless one ADP is known, they are both

unknown. However, there is more information available that can be obtained from spatially

resolved lens modes.

Since some general knowledge of the position of the focal point comes from the ARPES

chamber geometry, it is possible to roughly know where the focal point is located, and from

this starting point the spatially resolved analyzer lens modes can be used to minimize the

values of y for the electron emission point source. One procedure that will significantly

increase the ADP proximity to ideal values is for the minimization of y to be followed by the

modification of 0’ to achieve the symmetric IAC change condition. Equation 3.4 can then be

used to get the maximum size of error in y. Since — 1/2 1/2, the largest deviation in

y from the focal point can be determined to be (d/2p), which is,

dILA+x\ dLA (Ls—LA)
Sx

2 L+x 2L L52

Before the final ARPES experiment, the value of x is set to zero to make 8 the
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appropriate value for the analyzer lens mode, and in this way the NCIACA can be closely

achieved in practice.

Calculation of Errors in the Nearest Central Iso-Angle Contour Approximation

In applying the NCIACA, there is the fact that the positions in the real experiment are

not exactly at y = = 0, and the level of approximation involved in this assumption must be

evaluated in order to determine its validity. There are four important quantities that we obtain

from the formalism developed in this chapter.

i. Angle between extreme IAC

ii. Position of the zero of detector angle

iii. Position of the analyzer focal point

iv. Effect of z-axis offset

In this section, the error in these quantities will be determined in all parameter regimes

that are accessed in an ARPES experiment intended to determine the values of these

quantities. Error analysis will be done with the method of propagation of random independent

uncertainties5.

i. Angle Between Extreme Iso-Angle Contours

The angle between extreme IAC is already known generally from equation 3.2. There

are distinct regions of this equation that require separate expansions for errors, because of the

floor function. Within each region, the floor function can be considered a constant with no

contribution to the error except when the uncertainty of the argument of the floor function is

large enough to allow an adjacent region to be accessed by the distribution of random error.

In the case where y 0 and o- 0, then we can consider n = n_ = n to be constant. Since

n is considered to be a constant, the variable y does not play a role in the calculation, and only

the offset of the slit array relative to the point source contributes.

Expanding 3.2 about the NCIACA value of o’ = 0 gives,

Taylor, J. Am Introduction to Error Analysis. University Science Books, California, 1997.
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nd 2(ndLs)o’2
8’ 2tan_1

+L)2
0

2 I’dO’
2 \2

12(ndLs)(SCr)2’\2
(88’(o- —* 0)) + +

(n2d2 + L)2 )

The derivatives of 8’ with respect to d and L5 are:

a8’ — 2Lsn

cO — L2 + (nd)2

äÜ’ —2nd

= L2 + (nd)2

If an even number of IAC is present, then the situation is different, because of the

difference in n and n_. However, the error analysis ends up being identical with the simple

replacement of n — n + 1/2 and with a’ being taken to describe deviation from the point

a’ = d/2 that we had before.

ii. Zero of Detector Angle

The location of the zero of detector angle will be somewhat different than the location

stated in the NCIACA as long as y and a’ are nonzero. Knowing the zero of detector angle is

equivalent to knowing the true value of the electron emission angle at the location assumed to

be the detector angle zero in the NCIACA.

The exact value of the electron emission angle deviation from normal incidence to the

analyzer entrance is related to the IAC nearest the detector angle zero from,

[Cr
= tan1 I

[L + x

If we take the uncertainty in cP to be the measure of the precision of the angle at which

the NCIACA central angle value is known, we have,
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2

()2

(s +x) (1±(L)2))

+
((La +x)2 +

2)2(8Ls2 + 6x2) (35)

If there are an odd number of IAC in the SCD image, then Cr is expected to be zero, in

which case equation 3.5 reduces to,

6Cr
6cD=

L + X

to first order in o. In the even case, the uncertainty becomes to first order,

()2 ( +x) (i+
()2))

2

+ ((La +x)2+(d/2)2) (8L52 + 6x2)

iii. Focal Point

From the value of for which n*+ has a discontinuity, the analyzer focal point position x

can be determined from the SCD. From equation 3.3 we can see that there will be a

discontinuity when,

y(L5+x) Cr
+—=::i

d(LA +x) d

for integer i. This can be expanded as,

(Ls + x)D y(L5 + x) Cr (Ls + x)D
+ + — = t+ Floor (3.6)

2d(LA+x)d(LA+x)d 2d(LA+x)

(L5+x)D y(L+x) Cr

2d(LA+x)±d(LA+x)±di

for the new integer i’• The uncertainty in this quantity is related to the uncertainty in the

position x, which is what we are interested in. We can rearrange this to get an equation for x:

— (Ls 4j LAi’) ± (L5 + LA

±— (., D,(cr+y
2d) d
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The uncertainty in x can be calculated directly from this equation, but this will lead to

an equation that has y and Cr as parameters that must be known to evaluate the uncertainty.

These parameters are not precisely known in ARPES, which is the entire basis of necessity for

the NCIACA. Since, the value of x for the minus and plus branches are equal only when both

y and Cr are zero, we can in practice find a regime where the symmetric IAC change occurs,

and so at first approximation we can take y and Cr as their NCIACA values and examine the

effect of uncertainty in y, o, and the other parameters.

First, we can redefine D in terms of solid angle of acceptance, i, in the analyzer lens

mode.

D = 2 LA tan [j

The uncertainty becomes,

/ LAtan[]
2

((crFdi’)(Cr±Lstan[]Fdi’)

2

(Sx±)2 ( 5L J + 2 LA
\di’FCr—LAtan[--] J (Cr±LAtan[!9di’)

+( i’LA(LA_Ls)tan[](

\(Cr ± LA tan [] d i’) J \ tan [] R

+ (3.7)

Here, Cr is zero when there are an odd number of JAC, and Cr = d/2 when the number

of JAC is even. The parameters i& and i’ are taken to be constants that do not have

uncertainty, because the first one is given by the analyzer manufacturer and the second is

required to be an exact integer quantity. The value of i’ can be taken to be the value from

equation 3.6 when i = 0, since this is the case for y and Cr zero and the ARPES experiment is

done in such way as to be near enough to this situation that the values ofy and Cr balance the

nonzero value of z and remain in the i = 0 regime. If y and Cr are further from zero, it is
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possible that i is nonzero, and additionally the approximate error calculation done here would

not be valid for that situation.

The standard deviation 5y is an important contributor in the uncertainty ôx, because y

is related to the precision of the calculated focal point relative to the position of discontinuity

that leads to the symmetric IAC change. This is the only error calculation in this work that

involves c5y. In the other error propagation calculations, as long as y is close to zero in the

ARPES experiment, for instance by minimizing its value through a spatial analyzer mode,

then it does not contribute significantly to the errors here.

iv. Z-axis

The offset of the point source in the z-direction has not yet been mentioned. The effect

of the illumination of a point that is offset from the optical axis in the z-direction will only

effect the uncertainty in the other angle,
.

It will only contribute to the uncertainty in the

detector angle by increasing uncertainly in L and LA, unless some intrinsic function of the

electron lens system becomes important. This last effect will not be considered in this work,

as we will assume that the offset is small enough that this is negligible. The effect on L and

LA can be readily quantified as,

Ls = JLso2 + z2

LA JLAO2 + z2

The uncertainty can be modified to explicitly take this into account, but for the purposes

of this project it will only be necessary to make 8L and cLA large enough to reasonably

accountable for this additional uncertainty.
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Chapter 4 Image Warping

To proceed further, clarification of the methods of image warping and necessarily the

reconstruction of discreetly sampled data will be necessary. The starting point in data

reconstruction is the theory of Shannon, which proves perfect reconstruction is possible.

Unfortunately, application of this theory is inefficient or unpractical due to the necessity of

Sinc weighted sums over many points and the requirement of a band-limited signal6. It has

been shown, however, that by loosening the requirement for orthogonality in the

reconstruction basis functions, a basis of functions with much greater flexibility and

computational efficiency can be constructed, which will in practice asymptotically approach

the perfect reconstruction of Shannon, without the precondition of a band-limited signal7.

This is the basis of B-spline functions, which underlie polynomial splines and are known to be

compactly supported for greatest efficiency8.

There are two different approaches to image warping - “forward” interpolation and

“reverse” interpolation. The definition of forward and reverse refers to the direction of

mapping between the original and final image. The forward case is where a mapping is

applied to integer pixel coordinates in the original image, in order to determine final

coordinates at which the intensity at the original coordinate is distributed in the final image.

The mapping function will output a non-integer coordinate in the final image, and some way

of assigning the intensity to one or more integer coordinate pixels in the final image must be

decided.

The alternative approach is known as reverse interpolation, because it reverses the

mapping and applies it to integer final image coordinates to obtain non-integer positions at

which the intensity must be interpolated between the existing integer points in the raw

ARPES data. The interpolated intensity is then assigned to the final image coordinate. The

mapping used in reverse interpolation is the inverse of the one used in forward interpolation

and implicit in this discussion is the invertibility of the mapping function, though it should be

6Unser M. 2000. Sampling —50 Years After Shannon. Proceedings of the IEEE, 88(4):569-587.
Unser M, Aidroubi A, Eden M. 1992. Polynomial Spline Signal Approximations: Filter Design and
Asymptotic Equivalence with Shannon’s Sampling Thereom. IEEE Transactions on Information Theory,
38(1):95-103.
8Unser M. 1999. Splines: A Perfect Fit for SignaLflmage Processing. IEEE Signal Processing Magazine,

16(6):22-38.
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fairly clear from the implementation in this work that this will be the case. The satisfaction of

the invertibility condition means that the situation for the reverse procedure is analogous to

the forward one, though it is simpler to understand the effect of the detailed interpolation

scheme in the reverse case because it is a straightforward interpolation of the raw data as

opposed to redistribution in the final image9.

The computational implementation of the reverse mapping involves interpolation of the

intensity data at non-integer coordinates. There are many accurate and efficient interpolation

techniques available for this purpose. In the computer program developed and used in this

work, linear splines were used to reconstruct the intensity function and produced favorable

results. The accuracies at points that are interpolated from the original data is not easily

determined, however the basic reliability of the methods used in this project for sampled-data

reconstruction is well known’°.

It should be mentioned that there is an additional approach that makes use of non

uniform data, that is essentially a group of data that is not in the form of an array, but instead

just a list of points and their values. This is achieved by applying the forward mapping

function to the raw ARPES image and recording the non-integer positions along with their

accompanying intensity. At first glance this is very similar to forward interpolation, but in

truth the non-uniform method is more general since it does not directly involve any

interpolation. Actual use of the non-uniform output for plotting or any type of analysis

requires fairly advanced interpolation of the non-uniform data”2. This method is in the end

much more complicated than the forward and reverse methods, due to the interpolation

necessary for analysis. While the non-uniform method exceeds the scope of this work, it does

offer an interesting way to avoid interpolation until the point where a specific analysis task is

undertaken, and may lead to interpolations that have more elucidating physical interpretation.

Wolberg G. 1996. Recent Advances in Image Morphing. Proc. Computer Graphics Internat., 64-71.
‘° Thevenaz P, Blu T, Unser M. “Image Interpolation and Resampling.” Handbook of Medical Image

Processing. New York: Academic, 2000 ,chapter 25.
‘ Ruprecht D, Mueller H. 1995. Image Warping with Scattered Data Interpolation. IEEE Computer Graphics

and Applications, 15(2):37-43.
12jdi I. 2002. Scattered Data Interpolation Methods for Electronic Imaging Systems. Journal of

Electronic Imaging, 11(2): 157-176.
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Procedure of Finding Peak Positions in Slit Correction Data

Once a satisfactory SCD image is obtained from the experimental apparatus, the

position of the iso-angle contours can be determined. This was done by finding the peak

position of an EDC in the signal that forms the contours, since no a priori line shape is

expected in the electon emission from a sample of electron scattering from the tungsten wire

point source.

In theory one needs to simply fit all the peaks for every column of the image, though

this is both time intensive and in some cases impossible due to regions of low intensity of

nearly overlapping lines, for which the location of peak positions is indeterminable from the

standpoint of peak finding algorithms that are not excessively complicated or time intensive.

There are multiple solutions to this type of problem, and in this work a method has been

developed that utilizes a curve of best fit algorithm to obtain a functional relationship for the

peak positions from algorithms that locate the peaks for a specified number of columns of the

SCD image.

The peak position changes as a function of energy, so that fitting of the peak position

versus energy is possible with any function which accurately represents the contour shape. In

low angular dispersion (LAD) mode, this is usually only a linear function, since nonlinear

distortion is minimal in this setting. Analyzer modes that attempt to capture a larger energy

range have intrinsically higher angular distortion, so it was necessary to use a square root

function in the case of the wide angular mode (WAM) to fit the peak positions that form the

contour.

The peak finding algorithm used in this work is a sigma optimization applied to the

“peaks” algorithm and its dependencies, provided by John Johnson13. The “peaks” algorithm

relies on the routine “robust_sigma”, provided by the NASA Goddard Space Flight Center

IDE Library 14 In the peaks algorithm, all of the peaks are located via simple search for local

maxima in a vector list. Next, robust_sigma is applied to the peaks to determine their

standard deviation. The variable NSIG is supplied to the algorithm, and it returns the peak

positions for peaks that are NSIG above the standard deviation of all of the peaks that were

found13.

In this work, “peaks” has been modified to incrementally adjust the value of NSIG until

‘ http://astro.berkeley.edukjohnjohnlidl.html#PEAKS
“ http:I/idlastro.gsfc.nasa.gov/cgi-binlidllibsrch?keyword=robust+sigma
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the number of peak positions it returns is equal to the number of IAC lines that the user has

specified to be present in the SCD. NSIG is increased or decreased until the correct number

of peaks is returned, and these peaks are then guaranteed to be the peaks with the highest

statistical significance and must be the JAC positions. There are some exceptions, notably

when the finite peak width of the IAC causes two peaks to merge, in which case only a single

peak is detected. If there is statistical noise that could cause certain peaks to appear to the

routine as very closely spaced double-peaks, then a smooth operation can be applied to the

vector list with user-defined smooth length in order to eliminate spurious double-peaks.

Figure 4.1. The application of peak finding to data similar to figure 2.2 shows favorable

results. Positions of each color type are found by the peak fitting routine to belong to

the same iso-angle contour. There is difficulty in finding the positions at the edges of the

data set, where the peaks are not well defined, and can be seen near the bottom of the

figure.
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Peak position can be determined on as many columns as desired for high accuracy, as

shown in figure 4.1. In finding the peak positions, one encounters difficulty at the edges of

the data because of the rapidly diminishing peak heights. To resolve this issue, a fit function

applied to the easily found peak positions can be used to extrapolate to regions where finding

the peak positions is difficult. This avoids the need to crop regions of data that have angular

distortion reasonably well characterized by the analytic continuation of the peak position fit

function.

Final Positions to Construct the Discreet Coordinate Mapping Function

The mapping function can be defined to give the position of the final coordinates in

terms of the original coordinates, where original is in reference to the raw data that is directly

output from the ARPES experiment, that does not possess image parameter orthogonality.

The final image is taken as a reference to the image with IPO that is the final result of the

distortion correction. From the discussion thus far it is clear that the mapping is needed to

connect the original position of IAC as found by the peak fitting process in the last section to

the final positions that are defined in a coordinate space with IPO. In essence, the mapping is

orthogonalizing the angle axis to the kinetic energy axis in the DFED situation.

The previous section outlined the procedure by which the original positions are found,

and in order to create the mapping the final positions are required. These positions are not

measured coordinates, but rather theoretically derived values based on measured quantities,

and some explanation of the concept behind this construction is required. The theory behind

the NCIACA has already been derived in detail, and the fundamental equations here follow in

the same way, although here we can use the iterator ito describe the position of each IAC.

There are two equations that give the final positions on either side of the NCIACA central

position.

+ [id+(Y1
x’ ± y tan1 I I; 0 i n÷ (4.1)

[ L 1

The value of a’ is d/2 for the case where there are an even number of IAC, and a’ is zero

for the odd case. The final positions can be seen to be constructed from the angle of the IAC

relative to the NCIACA central position multiplied by the pixel per angle ratio, y. Any

constant added to equation 4.1 is arbitrary since it will not affect any physical quantities in the

data, and so it has been assigned to zero for simplicity.
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Given that the original positions are already known, the task at hand is to assign the

peak positions to the plus or minus branch of the final positions, and give the original

positions a one to one correspondence with the fmal positions calculated from equation 4.1.

By this process a discreet mapping function is created that couples each of the original peak

positions with a position in the final image such that the final coordinates obeys the IPO

requirement.

Fitting of the Mapping Function

With the original positions and final positions, all of the information is present for the

map to be established. This is of the form:

rn = [x1,x’j , for 1 I Npeaks

Npeaks is the number of iso-angle countours in the SCD image. The important limitation in

this description of the map is that we only have Npeaks points that are well determined. For

positions of the original image that do not correspond to any x, there is no information

available on the true nature of the mapping. For this reason, there is no choice but to

analytically continue the function between these points with an interpolation. The methods

used for this interpolation and for the intensity data proceed in the same way discussed in the

first section of the chapter.

The Conservation of Spectral Weight

The issue of spectral weight conservation is an important one for ARPES data, because

of the physical significance of the total spectral weight and its relation to the density of states.

In the attempt at reverse mapping with spectral weight conservation, it must be understood

that there is no exact solution and some level of approximation is necessary. This is due in

part to the fact that we do not know the exact value of the mapping function at all points, and

we do not have knowledge of the data at positions that do not correspond to a single pixel on

the ccd array. It is necessary to apply an equation of best fit to the mapping function points

obtained from IAC, and after an analytic fit is obtained, the properties of the mapping that

describe spectral weight conservation can be very accurately determined from the mapping
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function. The accuracy of spectral weight conservation is increased by the decrease in inter-

point interval of the fitted mapping function, and is therefore dependent on the precision of

the mapping function.

The conservation of image intensity after warping is described by change of variables

and the Jacobian. In the case of one dimensional mapping with a continuous variable we can

write the Integral equation’5:

çx(b) dx’(s)

j
I(x)dx=j 1(x’(s)) ds

a x(a) ds

The function x’(x) is the forward map and x(x’) is the reverse map. Two things are evident

from this equation. First, the intensity function has changed from (1(x): a x b} to

(1 (x’ (s)): x (a) s x (b). Secondly, the integral of the intensity function over the

corresponding regions before and after the mapping is not the same, and in order to achieve

equality a weight function defined by the derivative of the forward mapping, dx’/dx, must be

introduced under the integral.

If the conservation of intensity was the only issue involved, the problem would have

already been solved. By multiplying the distortion correction data by the derivative of the

forward mapping, the integral of the final image would be as close as possible to the integral

of the original image, likely differing only slightly due to some numerical errors in the

calculation of the derivative. In the case of reverse interpolation, this would lead to the final

image given by,

dx.(x.)
‘ I’(_1 — ( I ‘ ‘‘\ J “J

— Li’..1)
— , xx1,1ij

dx’L,J

In this case the discreet nature of the coordinates has been directly utilized. The

notation ofI for the final image pixel coordinates is equivalent to 11(i). The notation

i1 (xj(xj)) represents the interpolation of the intensity of the original image column] at

positions given by reverse map x evaluated at the integer final image coordinates x. The.

last term is the Jacobian, which is the derivative of the reverse map evaluated at the final

15 Lax, P. D. 1999. Change of Variable in Multiple Integrals. Amer. Math. Monthly 106: 497-501.
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image coordinates. We can show intensity conservation in this equation by taking the

continuous limit,

s—’ / dx•(x.

L J’(’\
— J i ( , ‘i J’_ I,J

-‘ ‘ — - dx

J a(s) ds
= J (Xt))

dxj(t)
dt; urn t

However, while this is a starting point, the reason this is not the final answer to spectral

weight conservation is that we require the preservation of more than just the integrated

intensity. There are two primary and fundamental types of information that can be extracted

from ARPES data, and type one is integrated quantities that involve the averaging or

summation of ARPES data. Type two information has nothing to do with integration, and

instead focuses on the location of features that are indicated by peak positions, local maxima,

constant intensity profiles, and any feature related to a specific or relative intensity value,

such as half-width-half-maximum analysis to determine peak width.

The problem with multiplying the entire data set by the Jacobian function is that it is not

clear to what extent this method will preserve both types of information, because the function,

ii’) = ij (x(x;,)) (4.3)

The distortion correction without the Jacobian, already preserves the intensity versus angle

and energy information that is the basis for type two information. However, the equation 4.3

does not preserve type one information, while equation 4.2 does.

It is clear that if type one information is not preserved, then the physical picture of

ARPES intensity in relation to a measure of the electron density of states is destroyed, which

is a serious problem for physically relevant analysis of the distortion corrected ARPES

images. Some way of reconciling the two pictures is necessary, but the impasse in doing so

centers around the fact that we do not have functional equation for spectral weight

conservation, only an integral equation’6.

Since this issue may be of relevance later, I have chosen to perform the distortion

correction in such a way that the result has two layers of data. One is the pure distortion

16 appendix B for more information.
33



correction as given by equation 4.3, without the Jacobian. The second layer to the data array

is the Jacobian. In this way, no information is lost. The reconciliation of the two data layers

via a functional relationship for the conservation of spectral weight will necessarily be the

subject of future work.

Extensions in Two Dimensions

While this work does not implement a two dimensional distortion correction due to

DFED as a starting point, it is interesting to note that the two dimensional case can be

seperated into two one dimensional cases if desired. A direct 2D distortion correction is

certainly possible, and it would proceed in the same maimer as already described for the 1D

case, if we extend all univariate functions to functions of both angle and energy. A two

dimensional Jacobian can be derived from the now 2D mapping function, whereas before we

had a list of independent 1D mapping functions. While this is a valid method, the presence of

two calibration images for both iso-angle and IEC allows an alternative approach.

In the case where we begin with the iso-energy contour image as discussed, it has been

shown that a reverse mapping distortion correction can be constructed from the information in

the raw ccd data. If that correction is applied to the second, iso-angle calibration image, then

that calibration image is equivalent to the iso-angle calibration image in the DFED case.

Proceeding exactly as detailed in the previous section, a second reverse mapping distortion

correction can then be constructed. Applying these two mappings in the same order to the

data, will result in data corrected in two dimensions. While this is not implemented in this

work due to the simplicity of DFED in the SPECS Phoibos 150 Analyzer, this discussion

illustrates the usefulness of the 1 D distortion correction and the simplicity of generalizing it to

arbitrarily higher dimensions by utilizing intermediate mappings of the iso-parameter

calibration images.
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Chapter 5 Experimental Procedure for Determining the Focal Point

The process by which the ideal positions x, y, and o can be found has been outlined and

its relevance explained within the context of a theoretical calculation. It is useful at this point

to elucidate this discussion with an example of the application of these principles on the UBC

ARPES system. In this experiment the vertical tungsten filament was used as the point

electron emission point source, with the electron source as. The position of the point source

was modified along the x and y directions in concurrence with the existing definitions of

these parameters, and the electron beam was steered in order to maintain illumination of the

tungsten wire. The electron source was set to an emission current of 1 OjiA.

Cz
>..

VI
C

C

0,

0 100

Spatial cod position (pixels)

Figure 5.1. The energy averaged photoemission signal from the tungsten wire as y is

changed. The green curve is peaked at the approximate center of the ccd camera.

330 400 500
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Figure 5.2. Uncorrected ARPES images versus cryostat position.
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First the high magnification analyzer mode was chosen as a suitable spatially-resolved

lens mode in order to set the y position to a value that indicated the point source was in the

center of the image. This condition was met when the central peak of the detector image was

centered around pixel 240 of 480 on the ccd camera, as shown in figure 5.1. The blue and

purple curve are included only to show the signature of the point source position y being far

from the ideal central value. The green curve illustrates a well-centered position that is close

to the NCIACA situation.

The next component of the procedure involved moving x to a position where either an

even or odd IAC situation allowed the adjustment of the slit array position o to achieve

symmetric IAC change on either side of the detector image. Once this was done, x was

varied again in either direction to asses the range of x for which symmetric line change was

observable, and the results appear in figure 5.2. Assessment of the range of x was necessary

because of finite line thickness and small variation in the effective analyzer acceptance solid

angle with energy caused only partial line removal at the sides of the detector image to be

observable at any given value of x.

From the results of this procedure, the symmetric iso-angle contour change appears to

occur primarily between cryostat x position of -0.5 mm and -2.5mm. This is a large range,

and since the value cannot be specifically found in this range, this represents the largest

contribution to the error of the focal point determination in an experimental setting.

Proceeding by use of the calculations of table 3.1 result in a symmetric line change for an

even number of JAC atx=0.0647. Taking the manufacturer specification ofLA40 mm, we

have the position of the point source to be x=2.59mm relative to the analyzer focal point at

x=0. A discrepancy between the cryostat position and point source position is found to lie in

their definition of positive axis as opposite to one another. Therefore, to obtain the focal point

in the cryostat coordinate we add the negative cryostat position to the positive point source

position to find that the focal point is at cryostat position x = 1.09mm ± 1.00 mm.

Comparing with the calculated error of equation 3.7, in choosing ij = 13

degrees, dlmm, LA=4Omm, Ls=32mm, o = 0.5mm, y=O, SLA = öL 0.5mm, 6o=0.lmm,

and noting that for the approximate values here the minus branch should be taken with i’=7 or

the plus branch with i’=8, to get Sx=1.O7mm. The experimental accuracy agrees very well

with the calculated uncertainty for these reasonable parameter choices.
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Post Distortion Correction Detector Angle Axis

The final determination of the detector angle axis is important for the finalization of the

initial stages of warping the raw ARPES images into the more useful form with IPO. When

this is done, a single-shot ARPES image will contain a three dimensional function of intensity

over the variables of detector angle and kinetic energy, and the benefit of the distortion

correction stage will be that this function is now described in an orthogonal coordinate

system. In order to proceed with analysis, however, it is fundamental to quantify the angle

axis. Detector angle is not known a priori, much unlike the kinetic energy axis that is given

by analyzer kinetic energy and pass energy that are fixed settings in an experiment and

specified beforehand. Without the angle axis, clearly there is no possibility of quantifying the

angular information accompanying intensity features. In order to determine this axis, several

pieces of information already processed in the distortion correction phase will be used to get

the slope and offset parameters for a line quantifying the detector angle axis.

The mapping function of the distortion correction was constructed with the peak

positions of IAC in the data of the initial calibration experiment, as well as the final locations

determined for these points. The definition of final locations requires the use of a slope-like

parameter y in pixels per angle, which is essentially arbitrary but can conveniently be set to

the median separation of extreme IAC in the calibration divided by the angle calculated

between these positions in the framework of the NCIACA. Despite what value of y is chosen,

it remains that the definition of this parameter has the effect of defining the distortion

correction mapping to direct the raw data intensity to a location on a linear angle axis with

slope of y. Therefore the choice of y that was involved in the distortion correction has

already defined one of the two parameters that quantify the angle axis.

The final parameter of the detector angle axis is an offset that can be considered to place

the zero of the axis at the appropriate position in the final image. From the NCIACA, we

have approximately determined the central position in the case of either an even or odd

number of visible IAC in the calibration experiment, and this information has been

incorporated into the final positions of the coordinate mapping function of the distortion

correction. In this process, the final IPO image has the contour that is the locus of all

NCIACA zero-angle positions as a straight line perpendicular to the detector angle axis. The

location of the zero-angle line must be determined by applying the mapping function to the

original zero-angle positions and finding where they occur in the final image. The position
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will in general not be an integer pixel coordinate in the final image, though a detector angle

offset can be determined to make the detector angle axis zero at the non-integer position.

Once both the slope, j’, and offset, b, are known, it is a relatively simple matter to

construct and evaluate the angle axis at final image coordinate x. The axis can be described

by the equation,

°detector angle + b

where the parameters y and b are specified so that °detector angle has units of degrees.

The inverse of y is used in the equation because it is defined in pixels per angle and its inverse

can be multiplied by the pixel coordinate x to return a value in degrees. This is equivalent to

redefining a slope parameter in units of angle per pixel, though its value would be identical to

the inverse of y. Finally, the detector angle axis is created as a vector quantity by evaluating

the equation at each integer coordinate in the final image.

At the end of the process described in this section, the angle value simultaneous with

each intensity pixel in the final, IPO image is completely described. This was accomplished

with knowledge of the slope and offset parameter of the detector angle, which are related to

the distortion correction and the coordinate mapping therein. While the slope parameter is not

directly connected to any physical quantity, this is not so for the offset. The slope avoids

having any significant impact on the uncertainty in the detector angle axis determination,

because it is an input parameter in the mapping that has no connection to physical quantities,

and does not modif’ the relation of information in the raw data with the linear detector angle

axis. This is not the case for the offset parameter, which directly shifts the axis in relation to

the image. This parameter is significant in regards to the accuracy of the detector angle, and

this is related to the accuracy of the fitted coordinate mapping function and NCIACA

approximation assumptions.

Propogation of uncertainty in the detector angle axis

The error propogation calculations of the last chapter have shown that while y is a

fundamental parameter in the calculation of the detector angle axis, the uncertainty in y does

not actually play a role in the uncertainty in angle, since the data transformed via the

distortion correction was corrected with y as an input parameter that did not have any direct

physical implication.

39



The offset of the detector angle axis itself has an uncertainty given by equation 3.5 with

ox2 given by equation 3.7. As an example, with the parameter choices used earlier in this

chapter to find Ox2 =1.16 mm2, and using x=0 as the experimental situation, this leads to an

offset 8c1 in the angular axis determination of3.2*103radians, or about 0.18 degrees. This is

the uncertainty introduced in the angle axis from the analysis procedure discussed in this

work, and can be considered a typical uncertainty in the angle determined with these methods.

The primary effect of this uncertainty is to introduce a finite resolution in momentum space,

which will be shown in the next chapter.

Implementation Distortion Correction for the UBC ARPES Chamber

The distortion correction following the discussion up to this point was implemented as a

collection of software objects that were written in the IDL programming language. Each

object has a specific purpose, and can either be a collection of functions or a self-contained

unit which is capable of storing variables and performing series of calculations via indirect

calls, for instance, to a single method of the object. This has allowed for relative

simplification in the organization and interconnectivity of the final graphic interface software

that utilizes the basic functions of the entire distortion correction software hierarchy. A

demonstration of the distortion correction software is included in appendix C.
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Chapter 6 Mapping to Momentum

In the UBC ARPES system, a detection event will occur at detector angle S and kinetic

energy Ek in the hemispherical analyzer. The momentum of the free electron after it emerges

from the sample is the most important information that can be derived from S and Ek.

Momentum is described as the projection of the momentum into Cartesian directions as

simply the multiplication of the magnitude of electron momentum with the unit vector,

= 2rnE
(coscsin6j+ sincsin6 + cos6I) (6.1)

where it is apparent that 6 is the poiar angle and ç is the azimuthal angle in the usual spherical

coordinates. Cast in this form it is analogous to the quantum number k() describing a

scalar(vector) Fourier component parameter of the electron wave function.

Illustration 6.1. Definition of coordinates that describe the electron emission angle

referenced to the sample surface.

z

x
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a) b)

Illustration 6.2. Definition of coordinates that describe (a) the detector angle S (b) the
cryostat angles 0 and

.

The momentum of the free electron is determined in the frame of the sample by

describing via the construction of a coordinate system on the sample surface separated by

rotation transformations from the axes aligned with the IPO symmetry of the detector. The

coordinate system is depicted in illustration 6.1. The connection of these coordinates to S and

the kinetic energy can be found with knowledge of the cryostat angles, 9 and 4, defined by

the coordinate system of illustration 6.2. Here we choose the direction in which the x-axis is

oriented to be parallel to a the optical axis with positive direction into the analyzer entrance,

then a right handed coordinate system is constructed by taking the y-axis to be in the plane

perpendicular to the x-axis, pointing right when facing the —x direction with positive z-axis

vertical and up.

Positive 8 is defined here to be the angle from the x-axis towards the y-axis in the x-y

plane. Positive is taken as the angle from the x-axis to the z-axis in the x-z plane. When

8 = = 0 , the sample-holder is defined to be normal is parallel to the analyzer axis and

pointing into the analyzer entrance.

In addition, we must account for angles which define the offset of the sample normal

from the zero of cryostat angles. The need for this is experimentally justified by the extreme

difficulty that would be encountered in the attempt to adhere a piece of material to a sample-

holder in such a way that there is no angular offset between the two. In real situations, this is

essentially impossible without elaborate efforts, and in practice it is not difficult to simply

account for these angles and correct for them using a reference such as the Fermi surface.

V
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The three crystal-offset angles are defined in an analogous way to the cryostat angles, in

the frame of the sample-holder, as ‘ and ‘ along the same directions as theta and phi,

respectively. The third angle /3 corresponds to a rotation of the sample-holder in the y-z plane

of the sample-holder coordinate system in illustration 6.1.

Rotation Transformation and Soiving Momentum

Altogether, there are two cryostat angles, three crystal-offset angles, two emission

angles, detector angle, and kinetic energy as parameters, and the goal is to obtain the

components of as a function of these parameters. The approach in this undertaking is to

begin with a unit vector pointing along the positive x-axis. Two rotation matrices are used to

rotate this vector into the direction defined by ç and i9. This is the vector that describes the

emission angle in the reference frame of the sample,

3emisston =

The rotation operators are defmed as,

1 0 0
T(a) = 0 Cos[a] Sin[a]

0 —Sin[a] Cos{a]

Cos[a] 0 —Sin[a]
T(a)= 0 1 0

Sin[a] 0 Cos[a]

Cos[a] Sin[a] 0
T(a) = —Sin[a] Cos[a] 0

0 0 1

These operators rotate vectors in a clockwise fashion, which is equivalent to rotating axes in a

counter-clockwise direction. The emission vector is then seen to be the rotation of the vector

towards the y-axis through a polar angle ç, followed by a rotation around the x-axis towards

the z-axis through an angle i9.

The axial system is now rotated so thati3emission, with the sample normal as the x-axis,

is redefined as Vsample holder This is accomplished by first rotating the coordinate system
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clockwise by angle f.? around the x-axis. Once the preferred orientation of the y-z plane is

defined by the f3 rotation, we can rotate clockwise by j’ about the y-axis, so that the z-axis

moves toward the x-axis. Following this, a rotation about the z-axis counter-clockwise by

angle 8’ rotates the x-axis towards the y-axis. The emission vector in the sample-holder

frame is then given by,

Vsample = T(—8’)T(4’)T(—I3) Vemission

=

It can be mentioned that the choice of angle fi is arbitrary, as it simply performs the

function of rotating the y and z axes in the sample frame, which is just a redefinition of the

orientation of the y and z axes in the plane perpendicular to the sample normal. The angle /9

was in essence chosen to be zero when the original coordinate system was defined, though the

choice of any non-zero angle would result in the transformation from angles to i identical to

offsetting f? by a constant. Leaving /.? as a parameter allows the continuous redefmition of the

starting axes, and is useful for instance in aligning with a symmetry axis in the reciprocal

crystal.

The mapping of photoemission intensity as a function of kinetic energy, and detector

angle to momentum space additionally requires knowledge of the cryostat angles or whatever

system dependent angles that give the sample-holder orientation, to describe

12sample holder from the frame of the analyzer. In the UBC ARPES system, these angles are

the 6 and cryostat angles. By rotating the coordinate system counter-clockwise about the y

axis by /, and then rotating clockwise by 8 about the z-axis, we are in the analyzer frame.

Reversing these two rotations, that is to start in the analyzer frame and rotate counter

clockwise about z by 0 and clockwise about y by 4, will result in the sample-holder frame.

Therefore,

analyzer = T(8)T()sample holder

= 13emission

= (6.2)
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We can also write iana1Y2eT in terms of the detector angle 0 since electrons that are

detected from the sample have specific emission vectors, given by,

ana1yzer = COS S I + Sfl Sf (6.3)

Equation 6.2 gives the transformation of a simple unit vector into the emission vector of

the electron in the frame of the analyzer via the seven angles 8, 4, 8’, ‘, f?, 9, and ç which

characterize the cryostat, sample-holder, and sample positions and the electron direction. The

angles i9 and ç, together the kinetic energy, are directly related to momentum, as can be seen

in equation 6.1 , and so the expressions for Vanalyzer indirectly relate angle and momentum.

In order to obtain a set of equations that directly gives the mapping from angle to momentum,

we must replace 9 and ç with the components of k from 6.1.

Rewriting expression 6.2 with the definition of the rotation operators leads to,

Cos[8] —Sin[8] 0 Cos[4j 0 —Sin[] Cos{8’] —Sin[8’] 0
anaLyzer = Sin[8] Cos[8] 0 0 1 0 Sin[O’J Cos[0’] 0

0 0 1 Sin[] 0 Cos[c] 0 0 1

Cos[’] 0 —Sin[’] 1 0 0
• 0 1 0 • 0 Cos[f31 —Sin[f?]

Sin{’] 0 Cos[9 0 Sin{f3] Cos[fl]

1 0 0 Cos[c] —Sin[c] 0 1
• 0 Cos[i9] Sin[i9]

. Sin[c] Cos[c] 0 0
0 Sin[i91 Cos[6] 0 0 1 0

Expanding and equating this with equation 6.3 we obtain three equations. To simplify the

transcription we will take the constant r to be defined by,

kx k1, ky k2, kz k3 where k• is the ith component of k.

Solving for the components of k gives one equation for each component,
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k = r (Cos[’]Sin[ — 8]Sin[0’] + Cos[8 — 8](Cos[0’]Cos[]Cos{4’] — Sin[]Sin[p’]))

r (Cos[13](Cos{0’]Sin[ö — 8] — Cos[S — 8jCos[]Sin[0’])
— Sin[I3]

(Sin[ö — 8]Sin[0p]Sin[’] + Cos[6 — 8](Cos[p’]Sin[] + Cos[9’]Cos[jSin[p’])))

k = T (Sin[ — 8](—Cos[0’]Sin[13] — Cos[13]Sin[O’]Sin[4]) + Cos[ —

(—Cos [13] Cos [4’] Sin[] + Cos[] (Sin [13] Sin[0’] — Cos [f3] Cos [0] Sin[4’])))

These three equations, that give the mapping from angles to momentum, are the central

result for this chapter. They fuily describe the connection between the laboratory reference

coordinates and the physically relevant coordinates for material physics and electron band-

structure. There is an idealization implied, in that the acceptance of the analyzer is taken as

infinitesimal, which is not exact for real detection systems where some c averaging must

always be present.
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Figure 6.1. Vector plots of {K,K} for = 0, for four choices of the crystal offset angles

0’ and ‘. A shift in the center of the vector field is evident here for crystal angle offsets
around 36 degrees, though in practice the offsets are typically less than fifteen degrees.

Figure 6.1 illustrates the effect of the crystal offset angles on the calculated electron

momentum from the angle to momentum transformation at the =O detector angle, as and 1
are changed. The effects appear quite complicated due to the large number of angles

involved, though the zero momentum position is observed to be offset in a direct fashion by

the crystal angles.

As a special case, it sometimes becomes useful to avoid the complication of crystal-

offset angles when performing an angle to momentum mapping, such as in situations where

the crystal-offset is very small or when speed is important, such as in testing software. By

omitting the three crystal-offset angles, and therefore the three matrix operators that

accompany them, a greatly simplified set of equations is found that in addition posses the
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property of having an inverse that is a closed formula.

Setting crystal offsets to zero results in,

k =tCos[ö—O]Cos[41

k =rSin[6—8]

= —rCos[6—8]Sin[]

Angles from Momentum

In the situation where we do not include crystal-offsets, we can immediately solve k2 for

the detector angle minus cryostat theta, and use this result to immediately solve for phi in

either k1 or k3, so that a reverse of this mapping is simple to obtain. For example, to obtain

(6—8)andcfromk2andk3,

(8—8) =

= sin

_____

.J2mEk

/ JV\ k
=sin 1 (1951*

Then,

•_F —k
S1fl [rCos[8—O]

-1 —hk
= sin

_____

,/2mEkCos[6—8j

._/ IV\ —k
=sin (1.95—I*

A I JCos[6—8]

Once we have (6 — 8) from k2, we can see it is a simple matter to insert into the

equation for k3 to obtain , showing the ease with which this special case can be inverted.

Note that the equation for is singular for (6 — 8) = ± ir/2 in this coordinate system. This

singularity poses no problem for the mapping of ARPES data, because there is no reasonable

use for data that includes electron emission velocities parallel to the sample surface, for the
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reason that such electrons have not even moved out of the sample. Due to the fact that there

are always some offset angles to account for, these reverse map functions are of limited use to

the experimentalist, though there may be use for simplified theoretical re-creation of an

ARPES experiment.

Cryostat Phi Resolution

If the resolution of k is examined in the limit of 4) dominant resolution and zero crystal

offsets one obtains that the first and third component of momentum are broadened, and k2 has

no additional broadening.

iXk= IkL4)Cot[4)1I

Effect of Angular Uncertainty on Momentum Coordinates

If the uncertainty in all parameters is neglected, except for the uncertainty in the detector

angle , then it is apparent that the uncertainty in the momentum will behave like T Cos [8 —

6] or r Sin[ö — 9] multiplied by a trigonometric function of the other ciyostat and crystal

offset angles. The momentum uncertainty is also proportional to the uncertainty in detector

axis which was shown to typically be 3.2* iO radians. This is a situation where the

uncertainty in momentum must necessarily change and a function of momentum. As an

example, for the case where the crystal offset angles are zero, the uncertainty in momentum

becomes,

— IrzöCos[6—61I

Lk Ir tXö Sin[8 — 61 Sin{4)]I

Even without the crystal offset angles, the situation is complicated because the

uncertainty depends on both cryostat angle 4) and electron kinetic energy through r.

Therefore, in general, the uncertainty of momentum space ARPES data is different for every

point. In the special case of no crystal offsets, we can expect the highest momentum

resolution to occur for k2 when the kinetic energy is low and 6 is near 90 degrees. For k3 the

best resolution occurs when kinetic energy is low, 6 is near zero, and 4) is near zero. The
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situation with crystal offsets is necessarily more complicated, but we can already see that the

momentum resolution is energy and angle dependent, and that it is different for different

momentum directions. From these equations we can see that since the trigonometric function

that characterizes the resolution is at most of order one, that the momentum resolution in all

directions is at least T zXö , so that on average the momentum resolution is bounded by a

constant with simple functional form of the square root of electron kinetic energy.

A closer look at the fully crystal offset dependent equations shows that each summation

term is accompanied by another where the Sine of some quantity appears in one and the

Cosine appears in the other. Overall, for any choice of these angles the summation can only

lead to a number of about one, since as one term approaches one the other must go to zero,

and the momentum resolution effect is bounded in the same way described for all choices of

angles. It is interesting that some angles lead to specific momentum regions with very high

precision, since the momentum mapping functions are less dependent on the angles in these

regions.

In discussion of this type of uncertainty it can easily be confused with random error that

is associated with Gaussian-broadening. The fundamental difference is that here M is

essentially a systematic error after a given distortion correction has been carried out. The

value is not known and will tend to fluctuate with different fitting procedures and distortion

correction mappings that will tend to change slightly on the basis of the use of numerical

routines, though iTh is approximately the same for each point of the distortion corrected data.

The main source of the confusion with Gaussian error in momentum space originates from the

constant and isotropic zXS in angle space resulting in a detailed functional form of error in

momentum space that varies globally.
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Figure 6.2. The error in momentum coordinates Ky and Kz are shown in both

magnitude and direction for crystal offsets up to 36 degrees. The magnitude of the

vectors is proportional to the systematic error in the detector angle axis.

The functional form of the error in momentum coordinates does depend on the crystal

offset angles. This is depicted in figure 6.2, where it is apparent that special points have

almost no dependence on the uncertainty in the detector angle axis offset, since the vector

magnitude is near zero based on purely geometrical considerations and born by the

trigonometric relations of angle and momentum. Other points have an uncertainty that is

essentially only in one momentum direction, so that the directional uncertainty is highly

anisotropic for these points. Finally, some cryostat angles lead to uncertainties in momentum

coordinates equal for both momentum directions, as shown by vectors that point towards the

top right in figure 6.2. The angle dependent error in calculated momentum coordinates means

that some portions of the transformed data will depend significantly on systematic error in the
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detector angle axis determination, and some special regions will not depend on the detector

angle offset.
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Chapter 7 Conclusions and Future Applications

This work has introduced calculation methods and experimental procedures for

rendering raw ARPES data in a meaningful form. All of the calculations and experimental

procedures were developed for the most part independently and the general treatment is fairly

self contained. Significant progress has been shown in the ability to characterize the

fundamental parameters necessary to translate raw ARPES data into a probe of the electronic

structure of materials.

As a result of this work it was shown in a slit array experiment that the accuracies in the

determination of the analyzer focal point match the independently calculated values based on

essentially random uncorrelated errors in the parameters, resulting in a determination of the

focal point at cryostat position x=l .09mm ± 1.07 mm. The experimental error is intrinsically

connected to the resolution and feature broadening characteristic of the ARPES detection

system. This observation can possibly be used to extend the understanding of the basic

broadening properties of the analyzer, with respect to the iso-angle contours for instance, so

that the probability distribution for electron and photon detection that forms the basis of

photoemission detection as a function of energy and angle can be characterized in terms of the

convolution of Gaussian-like distributions.

The focal point and uncertainty determination allows the demonstration of a calculated

random offset of the angular axis assigned to distortion corrected ARPES data of 0.2 degrees.

In regions where the mapping is well behaved, this is the major uncertainty associated with

the distortion correction technique to find the analyzer angle, demonstrating that a precise

determination of the angular axis is achievable with the methods developed here. A well-

defined analytic angle to momentum mapping has been achieved, in order to render the

intensity data versus momentum and energy, also leading to a description of momentum

accuracy as a function of momentum. The emerging functional form of momentum precision

has its origins in uncertainty acquired in the detector angle axis that comes about in the

process of analyzing slit calibration data to determine the detector angle axis.

The software implementation of these methods allows the raw data acquired from the

UI3C ARPES chamber to be applied to the study of materials. While the overall experimental

situation has been shown to be complicated by many technical issues, the progress here is to

simpli1r a number of issues present in the pursuit of high resolution ARPES data. Further
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experiments could not be completed on the timeline presented for this work, though plans

exist in which these developments will continue in direct analogy with the scientific

discussion and literature of electronically two dimensional superconductors.

Many key questions regarding the procedures for handling the raw data acquired in an

ARPES experiment must be addressed before one can make use of the wealth of physical

information in the data. In performing this type of experiment, it is essential that the desired

endpoint is a clearly defined representation of the raw data for facilitation of understanding

the underlying physics of materials. This is a task inherent to the use of ARPES as a surface

science technique. It is of great use to develop this discussion from a general starting point so

that application of the overall method at other experiment facilities is possible. The angle-

resolved photoemission spectroscopy apparatus in use at the Quantum Materials Laboratory at

the University of British Columbia presents this opportunity, for the connection of this

laboratory to imminent developments of ARPES at the Canadian Light Source suggests that

application of this work will expedite the development of next-generation ARPES.
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Appendix A

SPECS Phoibos 150 Hemispherical Analyzer

The Phoibos 150 Hemispherical Analyzer was manufactured by the SPECS GmbH —

Surface Analysis and Computer Technology Company located in Berlin. The path of photo

emitted electrons in this detection system begins with incidence into the analyzer entrance.

An iris is used to optionally block electrons that fall outside the iris radius around the analyzer

entrance central axis. The analyzer has an electron lens with a wide variety of spatial and

angle resolved lens modes, which is followed by a series of entrance slits to a hemispherical

capacitor used for the selection of electrons within a pass energy (Ep) of an electron kinetic

energy (EK). Upon exiting the hemispherical capacitor, electrons pass through an exit slit,

and are then multiplied by a chosen gain in micro-channel plate, then are incident on a

phosphor screen. The photons generated by the electron bombardment of the phosphor screen

are then captured by a ccd camera (see pixeifly camera).

PCO Pixeifly QE

The PCO Pixelfly QE camera forms the final stage of the detector. The camera is a

standard ccd digital camera constructed for low noise and high efficiency characteristics. The

ccd array contains 640x480 pixels and is oriented to give the long image axis along the energy

direction of the hemispherical analyzer. The camera is located in a position on the

hemispherical analyzer such that the entire phosphor screen is captured by the image, hence

there is no a priori cropping of the phosphor screen upon final detection. The variable

parameters in an ARPES experiment are dwell time and number of exposures, where the first

signifies the length in time the ccd array accumulates charge from photodetection before

reading the image, and the second refers to the number of images that are averaged into the

final image. The camera temperature is stabilized by a dedicated fan that cools the camera

housing.

SPECS UVS 300 Very High Intensity UV Lamp

The UVS 300 forms one of the primary light sources for ARPES at the UBC QML.

This apparatus guides thermally generated electrons from a hot filament into a discharge

region to form a dense plasma along the illumination axis, and is able to achieve high
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intensity spectral line photon emission from helium and other gases.

SPECS Toroidal Mirror Monochromator TMM3O2 R2 and Ellipsoidal Transfer

Capillary

Mounted coaxially with the UVS300, the TMM3O2 R2 uses a toroidal mirror, plane

grating, and plane mirror to achieve line selection of the narrow spectral lines output by the

high density plasma of the UVS300. This essentially monochromates the photon source in

order to facilitate ARPES. The TMM302 R2 itself has a large 500 Liter per second turbo

pump attached, which allows a large pressure gradient between the fairly high pressure of the

UV lamp and the ultra high vacuum environment of the ARPES chamber. The

monochromator is followed by an ellipsoidal capillary with diameter of 1.6 mm. The

capillary is designed to allow focusing of the photons in addition to high transmission of

around 60 percent, and a focused spot size on the material of interest of about 0.8 mm in

diameter.

Electron Gun

The documentation relevant to the SPECS Electron Source was not available at the time

of this writing. However, the device was used to illuminate the tungsten wire with a broad

range of electron energies simultaneously and performed very well at this task both in terms

of energy distribution and beam size as observed in ARPES experiments. The electron source

operates through a simple principle of hot filament electron emission with retarding,

accelerating, and steering voltage plates. In the experiments carried out in this work the

electron energy was set to a distribution centered on 1 keV of energy and beam size was set to

less than 0.1 mm in radius.

Cryostat

The cryostat component of the UBC ARPES apparatus was designed primarily as a

result of efforts by UBC PhD student Jeff Mottershead. The cryostat has a changeable sample

holder, with the sample position aligned with a tungsten wire that was used in this project for

the slit correction calibration experiments and theory. Additionally, the cryostat possesses the

ability to rotate the sample holder along the cryostat angle axes ±30° in 4 and more than the

sufficient ±90° in 9(see chapter six for definition of angles). The angular degrees of freedom
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are supplemented with translational degrees of freedom x,y,z (see chapter 3 for definition of

directions).
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Appendix B

The method to obtain a functional relationship for intensity conservation by taking the

limiting case of small integration window in equation — will be examined in this section.

This method would proceed in the following way,

/ ,-a+E / ,.x(a+E)
II f \LLX

hm I I I(s) ds I = urn I I I jx (t)) dt
6-40 J E—’0

\Jx(a) dt

I(a)EI(a).E.t1
X

x(a)

dx’(t)
-4

dx
x(a)

This result does not make any sense, since there is no prior condition that x’is to even

necessarily be linear. What can be seen is that the second step is only a valid statement in the

limit that E becomes infinitesimally close to zero. If the last statement proves to be true, then

there is some validity away from E = 0, but the last statement itself implies that the mapping

is just the trivial function x ‘(x) = x. The result is that the small integration window limit

does not produce a functional relationship for intensity conservation unless the mapping is

trivial.
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Appendix C

It is the purpose of this appendix section to illustrate the software procedure in its

currently implemented form. The underlying computer code will not be discussed in detail

here, since it will not expand the discussion beyond the descriptions of methods already

provided in the body of this work. A series of illustrations will be presented, which show how

the user interacts with the software, and all illustrations are basically “screen shots” of the

software in use on a data set. All software is written in the ITT IDL language.

The first illustration displays the slit correction data, and the way in which the unecessary

energy regions are cropped from the data set. This is achieved with vertical line cursors that

enclose the desired region of the data for further processing. The second step shows another

cropping window that allows the user to select the angular regions of interest by creating a

line through the top two and botom two white-cross cursors. The regions above and below

are removed from the data set. After this the effect of the cropping is shown, and the required

user input of number of iso-angle contours and distance of the sample to the slit array. The

next step is fitting the contours by adjusting sampling, smoothing, and region size parameters,

and the results are shown. Finally, the result of the distortion correction on the slit correction

data and data from a material sample is shown.
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.3

-

— ShowCrap I
— Re’’e I

Done

X position 349
‘1’ position: 115

Illustration C.1. The energy direction cropping of the slit correction data. Crop, revert,
and done are buttons that the user selects, and the cursor position is continuously
displayed.
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Illustration C.2. Angular direction cropping by construction of lines through the
cursors. The number of contours, or lines, is input by the user, as well as the distance
between the sample and the slit array.
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IDL

__ __ ______

Revert

Done

Number ol Lines = Distance Between Slits and Analyzer (32mm default) = [32.0000

X position: 452
Y position: 103

Illustlation C.3 The result of the crop settings in illustration C.2.

Sho, Crop
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2 IDL

___ ___ __

I!J

Fevert

Done

Number of columns to sample = Smooth length for peak linding
=

X position: 404
position: 202

Illustration C.4. The energy region for fitting the contours is shown between the vertical
white lines. The number of points to sample for each contour is input, as well as a
smooth window size for increasing accuracy when random noise in the data becomes
important.

Do Fit
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IDL

__

Rivert

Done

Number o columns to sample
=

Smooth Ienth Icr peak lindirig =

X position: 261
Y position: 208

Illustration C.5. The results of the settings of illustration C.4 after fitting the contours.
The agreement is quite good for these settings.
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TV5CL Window (33

___________________________

Illustration C.6. A rendering of the slit correction data after is has been corrected with
the distortion correction constructed from the previous steps. Notice that some

aberration from occurs in the region of lower kinetic energy and large angle in this

analyzer lens mode. This is an effect resulting from the iso-angle contours approaching

intersection in this region.
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Illustration C.7. The distortion correction applied to a single data image that was taken
just after the slit correction data.
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