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Abstract. In strongly correlated materials the electronic and optical properties are
significantly affected by the coupling of fermionic quasiparticles to different degrees of freedom,
such as lattice vibrations and bosonic excitations of electronic origin. Broadband ultrafast
spectroscopy [1, 2] is emerging as the premier technique to unravel the subtle interplay
between quasiparticles and electronic or phononic collective excitations, by their different
characteristic timescales and spectral responses. By investigating the femtosecond dynamics
of the optical properties of Bi2Sr2Ca0.92Y0.08Cu2O8+δ (Y-Bi2212) crystals over the 0.5-2 eV
energy range, we disentangle the electronic and phononic contributions to the generalized
electron-boson Eliashberg function [3, 4], showing that the spectral distribution of the electronic
excitations, such as spin fluctuations and current loops, and the strength of their interaction
with quasiparticles can account for the high critical temperature of the superconducting phase
transition [5]. Finally, we discuss how the use of this technique can be extended to the
underdoped region of the phase diagram of cuprates, in which a pseudogap in the quasiparticle
density of states opens.

The microscopic modeling of the interaction of ultrashort light pulses with unconventional
superconductors will be one of the key challenges of the next-years materials science, eventually
leading to the full understanding of the role of the electronic correlations in controlling the
dynamics on the femtosecond timescale.
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1. Introduction
The generalized bosonic function
In conventional metals the scattering between quasiparticles (fermions) and lattice vibrations
(bosons) is the microscopic mechanism that determines the transport and the optical properties.
At low temperatures the electron-phonon interaction, denoted by α2F (Ω), provides the ”glue”
for the formation of the Cooper pairs, leading to the instability of the Fermi-liquid ground
state upon the formation of the superconducting condensate. The critical temperature of
the superconducting phase transition, that is of the order of a few degrees, is determined by
the electron-phonon coupling constant, i.e. λe−ph=2

∫
α2F (Ω)/Ω dΩ, through the McMillan’s

formula [6].
In the cuprate superconductors, the electronic correlations are responsible for the emergence

of complex orders, influencing the phase diagram even far from the antiferromagnetic insulating
phase at zero doping. These novel degrees of freedom, like paramagnon excitations [7], charge
fluctuations [8] or loop currents [9] provide additional scattering channels to quasiparticles
(QPs), strongly affecting their lifetime and dispersion over an energy range of the same
order of the spectral distribution of the excitations. An ”effective” description of the generic
interaction between quasiparticles and excitations of both electronic and phononic nature, whose
distribution at a given temperature follows the Bose-Einstein statistics, can be obtained by
replacing the α2F (Ω) with a more general electron-boson coupling function [4], i.e., the Bosonic
Function Π(Ω), defined as:

Π(Ω) ≡ α2F (Ω) + I2χ(Ω) (1)

where I2χ(Ω) accounts for the coupling with all the bosonic excitations of electronic origin.
The signatures of the QP-boson interaction usually manifest in most of the experiments that

probe the electronic properties at equilibrium. The generalized bosonic function Π(Ω) can be
extracted [4] by analyzing the kinks in angle-resolved photoemission data [10], the dip features in
tunneling spectra [11, 12], the frequency-dependent scattering rate in optical spectroscopy [13, 3]
and Raman spectra [14]. Π(Ω) shows some ubiquitous features, independent of the technique
used, like a strong peak at 50-80 meV and a broad continuum that extends up to 300-400 meV.
Although a main effort has been recently made [4], the determination of the relative weight of the
electronic and phononic contributions to Π(Ω) remains elusive, since the electronic and phononic
excitations coexist on the 0-90 meV energy scale. Solving this problem would constitute a step
forward to unravel the puzzle of superconductivity in cuprates, while addressing the major
question whether or not high-temperature superconductivity can be described in terms of a
generalized Eliashberg formalism, in which the attractive interaction is ’retarded’, i.e., mediated
by virtual bosonic excitations of novel origin [15].

Non-equilibrium time-resolved spectroscopies are emerging as new fundamental tools to tackle
these fundamental questions [1, 2] and directly probe the energy exchange between QPs and the
coupled bosons, on their intrinsic timescales. The founding concepts of these techniques rely on
the use of an ultrashort light pulse (pump) to prepare the system in a non-equilibrium state, i.e.,
with the distribution of fermionic QPs decoupled from the distribution of bosonic excitations,
and a delayed probe that takes snapshots of the dynamics of the physical properties during the
recovery of the equilibrium state. In the last years, many techniques have been developed to
directly probe the different degrees of freedom relevant to the relaxation of photoexcited QPs.
Time-resolved photoemission, which probes in real time the change of the QPs distribution with
k-space resolution, has been used [16, 17] to measure the relaxation time of the non-equilibrium
population and demonstrate the strong and selective coupling of QPs with a subset of phonons,
most likely breathing and buckling modes. More recently, time-resolved electron diffraction,
which is sensitive to the lattice displacement, has been applied [18] to directly investigate the
structural dynamics of cuprates and demonstrate an anisotropic coupling with buckling lattice
modes, already effective on the 50 fs timescale.
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Figure 1. Reflectivity of the Bi2Sr2Ca0.92Y0.08Cu2O8+δ crystal at optimal doping (Tc=96
K), as measured by conventional spectroscopic ellipsometry (red dots). The reflectivity is well
reproduced by an extended Drude model and a sum of Lorentz oscillators (black line). The total
bosonic glue, Π(Ω), extracted from the data is shown in the left inset. The dashed black line
represents the reflectivity calculated for the same system at T=500 K.

Among the different time-resolved techniques, we will focus on time-resolved optical
spectroscopy, which probes the evolution of the dielectric function of the system after the
excitation with a short light pulse. Although k-space-averaged, optics can be used to monitor
the transient QPs scattering rate that is related to the coupling with bosons of electronic and
phononic origin. In general, the pump-induced transient changes in the optical properties can
be modeled by a two-steps process: i) the sudden photo-injection of fermionic QPs results in an
effective increase of the plasma frequency of the Drude peak in the optical conductivity, without
any change of the QPs scattering rate; ii) the subsequent heating of the bosonic excitations
induces an increase of the scattering rate and a broadening of the Drude peak, without any
change of the plasma frequency. Since changes in the plasma frequency and in the scattering
rate affect the optical conductivity in qualitatively different ways, optical spectroscopy with
femtosecond time-resolution can be used to probe the temporal evolution of the distribution
of fermionic QPs and bosonic excitations, as a function of the delay from the pump pulse.
Furthermore, the dynamics of bosonic excitations of electronic and phononic nature can be
disentangled on the basis of their different timescales while exchanging energy with QPs.

In this work, we will briefly introduce the basics of equilibrium and non-equilibrium optical
spectroscopy, we will review the main results on the determination of the relative electronic and
phononic contributions to Π(Ω) and, finally, we will show how this technique can be extended
to investigate the opening of a pseudogap in the quasiparticle density of states and possible
anomalies in the temperature dependance of the QP self-energy.

2. Optical spectroscopy at equilibrium
Optical spectroscopy at equilibrium is a fundamental tool to investigate the electronic properties
of strongly correlated materials [19] and unconventional superconductors [20]. Since the dielectric
function contains direct information about the scattering rate of QPs and their dynamical
effective mass, optical spectroscopies are intrinsically sensitive to the coupling of QPs to bosonic
excitations.
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2.1. The optical properties of a prototypical cuprate
In Figure 1 we report the ab-plane reflectivity of optimally-doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ

(Y-Bi2212) high-quality crystals [21] (Tc=96 K), measured by conventional spectroscopic
ellipsometry [22] at 300 K. The normal-incidence reflectivity R(ω, T ) is related to the dielectric
function ε(ω, T ) by the relation:

R(ω, T ) =

∣∣∣∣∣1−
√
ε(ω, T )

1 +
√
ε(ω, T )

∣∣∣∣∣
2

(2)

The dielectric function is obtained by applying the Kramers-Kronig relations to the reflectivity
for 6 meV<~ω<0.74 eV and directly from ellipsometry for 0.2 eV<~ω<4.5 eV. This combination
allows a very accurate determination of ε(ω) in the entire combined frequency range.

The reflectivity of Y-Bi2212 shows some general features common to most of cuprates:
i) below 1.25 eV the optical properties are dominated by a broad peak related to the optical
response of the low-energy excitations in the conduction band. Interestingly, the dielectric
function in this energy range cannot be simply reproduced by a Drude peak, in which a constant
scattering rate τ and effective mass m∗ of the QPs is assumed. The strongly frequency-dependent
scattering rate and effective mass, resulting from the interaction with bosonic excitations, will
be accounted for by the more general extended Drude model [20], presented in the next section;
ii) above 1.25 eV, the high-energy interband transitions dominate. In this energy range, the
equilibrium dielectric function can be modeled as a sum of Lorentz oscillators at ∼1.5, 2, 2.7
and 3.9 eV [2]. The attribution of these interband transitions in cuprates is a subject of intense
debate. The ubiquitous charge-transfer (CT) gap edge (hole from the upper Hubbard band with
dx2−y2 symmetry to the O-2px,y orbitals) in the undoped compounds is about 2 eV [20]. Upon
doping, a structure reminiscent of the CT gap moves to higher energies, while the gap is filled
with new transitions. This trend has been recently reproduced by Dynamical Mean Field Theory
(DMFT) calculations of the electron spectral function and of the ab-plane optical conductivity
for the hole-doped three-band Hubbard model [23]. The structures appearing in the dielectric
function at 1-2 eV, that is, below the remnant of the CT gap at 2.5-3 eV, are possibly related
to transitions between many-body Cu-O states at binding energies as high as 2 eV (for example
singlet states) and states at the Fermi energy;
iii) the dressed plasma frequency, ω̄p, defined through the relation Re{ε(ω̄p, T )}=0, is ∼1 eV. In
this energy range, the signatures of the pump-induced change of the QP distribution and of the
heating of bosons can be more effectively disentangled, as will be discussed in Section 3.

2.2. The extended Drude model
In the extended Drude model (EDM) the physical processes responsible for the renormalization
of the lifetime and effective mass of the QPs are accounted for in a phenomenological way,
by replacing the frequency-independent scattering time τ with a complex temperature- and
frequency-dependent scattering time τ(ω, T ):

τ−1 ⇒ τ̃−1(ω) = τ−1(ω)− iωλ̃(ω) = −iM(ω, T ) (3)

where 1 + λ̃(ω) = m∗

m (ω) is the mass renormalization of the QPs due to many-body interactions
and M(ω, T ) is the memory function.
In the EDM, the dielectric function εD(ω, T ) is given by:

εD(ω, T ) = 1− ωp
2

ω(ω +M(ω, T ))
= 1− ωp

2

ω(ω(1 + λ̃(ω, T )) + i/τ(ω, T ))
(4)
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Figure 2. Frequency-dependent
scattering rate (left axis) at 300 K
(red line) and 100 K (blue line)
and effective mass (right axis) at
300 K (red dashed line) and 100 K
(blue dashed line) of the fermionic
quasiparticles.

while the Drude optical conductivity σD(ω, T )=[1− εD(ω, T )]iω/4π reads:

σD(ω, T ) =
i

4π
ωp

2

ω +M(ω, T )
=

1
4π

ωp
2

1/τ(ω, T )− iω(1 + λ̃(ω, T ))
(5)

The renormalized scattering rate and effective mass can be directly extracted from the measured
Drude optical conductivity, through the relations:

1/τ(ω, T ) =
ω2
p

4π
Re
(

1
σD(ω, T )

)
(6)

1 + λ̃(ω, T ) = −
ω2
p

4π
1
ω

Im
(

1
σD(ω, T )

)
(7)

Although this phenomenological version of the EDM does not provide any clue about the
microscopic mechanisms responsible for the renormalization of the energy dispersion and lifetime
of the QPs, it is very useful for directly extracting τ(ω, T ) and m∗(ω, T )/m from the optical data.
In Figure 2, we report τ(ω, T ) (solid lines, left axis) and m∗(ω, T )/m (dashed lines, right axis)
obtained by applying Eqs. 6-7 to the low-energy part of σD(ω, T ), measured on optimally-doped
Y-Bi2212 samples. At T=300 K (red lines), the value of the QP scattering time is ∼5 fs at very
low frequencies and decreases towards an asymptotic value of ∼2 fs above 0.5 eV. These values
of τ(ω, T ) imply that QPs scatters very quickly and exchange energy with bosons on the very
femtosecond timescale. As the temperature decreases, the opening of the pseudogap prevents
QPs from being scattered and an increase of the scattering time below 100 meV is measured,
while the value of τ(ω, T ) above 100 meV is almost unaltered. A similar behavior is measured
for the effective mass, that decreases towards the m∗/m=1 asymptotic value above 0.5 eV.

2.3. The extraction of the bosonic function from the optical conductivity
From the microscopic point of view, the Extended Drude formalism can be derived from the
Holstein theory for normal metals [24]. Considering the Kubo formula and using complex
diagrammatic techniques to evaluate the electron and boson thermal Green’s functions and
omitting vertex corrections (Migdal approximation), the Memory function M(ω, T ) results:

M(ω, T ) = ω

{∫ +∞

−∞

f(ξ, T )− f(ξ + ω, T )
ω + Σ∗(ξ, T )− Σ(ξ + ω, T ) + iγimp

dξ

}−1

− ω (8)

where f is the Fermi-Dirac distribution, Σ(ω, T ) and Σ∗(ω, T ) the electron and hole k-space
averaged self-energies and γimp an intrinsic decay rate that accounts for the scattering by
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impurities. We pinpoint that, although the memory function M(ω, T ) has the same analytical
properties of the single-particle self-energy Σ(ω, T ), it has a conceptually different meaning,
since the optical transition at frequency ω involves a particle-hole excitation of the many-body
system and provides information about the joint particle-hole density of states.

The electron self-energy Σ(ω, T ) can be calculated as a convolution integral between the
bosonic function Π(Ω) and a kernel function L(ω,Ω, T ):

Σ(ω, T ) =
∫ ∞

0
Π(Ω)L(ω,Ω, T )dΩ (9)

The kernel function

L(ω,Ω, T ) =
∫ [

n(Ω′, T ) + f(Ω, T )
Ω− ω + Ω′ + iδ

+
1 + n(Ω′, T )− f(Ω, T )

Ω− ω − Ω′ − iδ

]
dΩ′ (10)

accounts for the distribution of the bosonic excitations through the Bose-Einstein distribution
n(Ω, T ), and can be calculated analytically:

L(ω,Ω;Te, Tb) = −2πi
[
n(Ω, Tb) +

1
2

]
+ Ψ

(
1
2

+ i
Ω− ω
2πTe

)
−Ψ

(
1
2
− iΩ + ω

2πTe

)
(11)

where Ψ are digamma functions and the dependence of the different terms on the temperatures
of the electronic QPs (Te) and bosonic excitations (Tb) has been made explicit. In this formalism,
the frequency-dependent scattering rate is a consequence of the microscopic interaction of QPs
with a distribution of bosons at temperature Tb.

Close to optimal doping, the vertex corrections beyond Eliashberg theory can be reliably
neglected and the EDM can be safely used to extract Π(Ω) from the optical conductivity,
measured at the equilibrium temperature T . Although sophisticated maximum entropy
techniques [13] have been developed to unveil the rich details of the bosonic function, the main
features can be evidenced by simply fitting the model in (5) to the experimental reflectivity
R(ω, T ), reported in Figure 1, and assuming a simple histogram form for Π(Ω). The resulting
bosonic function is reported in the left inset of Figure 1 and is characterized by:
i) a low-energy part (up to 40 meV) linearly increasing with the frequency. This part is
compatible with either the coupling of QPs to acoustic [25] and Raman-active optical [26]
phonons or the linear susceptibility expected for a Fermi liquid [27];
ii) a narrow, intense peak centered at ∼60 meV, attributed to the anisotropic coupling to either
out-of-plane buckling and in-plane breathing Cu-O optical modes [28] or bosonic excitations of
electronic origin such as spin fluctuations [29];
iii) a broad continuum extending up to 350 meV, well above the characteristic phonon cutoff
frequency (∼90 meV) and usually attributed to the coupling with spin fluctuations [30, 31, 32, 7]
or loop currents [33].

Using a sum of the EDM and four Lorentz oscillators at ∼1.5, 2, 2.7 and 3.9 eV, the reflectivity
of optimally-doped Y-Bi2212 can be satisfactorily reproduced up to 2.5 eV photon energy (see
the black solid line in Figure 1). In the EDM the main role of the temperature is to change the
density of the bosons and, as a consequence, the scattering rate of QPs. In Figure 1 we report
R(ω, T ) calculated for T=500 K (dashed line). The T -related increase of the scattering rate
induces a broadening of the Drude peak, resulting in a decrease of the reflectivity below ω̄p=1
eV and an increase of the reflectivity above ω̄p.

Although very useful to determine the microscopic origin of the frequency-dependent
electronic properties and capable of reproducing most of the features of the temperature-
dependance of the dielectric function, the EDM does not allow to evaluate the relative
contributions of the phononic and electronic contributions to the total Π(ω), since they spectrally
coexist below 90 meV.
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3. Non-equilibrium optical spectroscopy
Non-equilibrium optical spectroscopy permits to monitor the change of the dielectric function
and, in particular, of the QPs scattering rate, during the relaxation process after the interaction
with an ultrashort optical light pulse. Adding the temporal (t) dimension to the frequency (ω)
dimension will be the key to disentangle the phononic and electronic contributions to Π(ω). A
sketch of the technique is reported in Figure 3. A 100 fs infrared optical pulse (1.5 eV photon
energy) is used to excite the sample. The dynamics of the dielectric function is probed by
combining two ultrafast optical techniques: i) supercontinuum light generation in a photonic
fiber and simultaneous detection of the 1-2 eV spectral region through a linear array, after
dispersion in a prism; ii) Optical Parametric Amplification providing tunable and short (<100
fs) output pulses in the 0.5-1.1 eV range. The details of the experiment can be found in Refs.
[1, 2, 5].

3.1. The extended Drude model out of equilibrium
During the interaction with the pump pulse, two physical processes are expected to take place
on the sub-picosecond timescale:
-High-energy fermionic excitations are impulsively injected by the pump pulse. Since the lifetime
of these excitations is very short, they rapidly relax toward the Fermi energy, producing a high-
density of QPs at lower excitation energies. As far as no pseudogap is present, which would
provide constraints for the QPs scattering processes, we assume that the excess of QPs can be
described through an effective increase δTe of the equilibrium electronic temperature Te.
-The temperature Tb of the distribution of the bosonic excitations shows a δTb increase because
of the QP-boson coupling.
By noting that the Kernel function L(ω,Ω;Te, Tb) is the sum of separate terms depending on
the electronic and bosonic temperatures, it is possible to use the EDM described in Section
2.3 to calculate the changes in the optical properties expected at t=0, i.e., soon after the
excitation, in the two limits: a) Non-thermal scenario, i.e., δTe�δTb, in which the QPs are
almost completely decoupled from the bosons. b) Quasi-thermal scenario, i.e., δTe'δTb, in
which the QPs and bosons are in thermal equilibrium at an effective temperature larger than
the equilibrium temperature.

To facilitate the comparison with the experimental outcomes, we calculated the relative
variation of the reflectivity at t=0, defined as the relative difference of the reflectivities out
of equilibrium (Roeq) and at equilibrium (Req):

δR

R
(ω, T ) =

Roeq(ω, T )−Req(ω, T )
Req(ω, T )

=
R(ω, Te + δTe, Tb + δTb)−R(ω, Te, Tb)

R(ω, Te, Tb)
(12)

The results are reported in Figure 4. In the case δTe�δTb (yellow solid line), the variation of
the reflectivity shows a positive, intense feature just below ω̄p=1 eV, while it is negligible at
higher energies. This behavior can be rationalized in terms of a small increase of the plasma
frequency without any change in the scattering rate τ(ω). For the case δTe'δTb (black solid
line), the reflectivity variation is dramatically different, since it is dominated by the increase of
the density of the bosons and of the QPs scattering rate, as evidenced by the broadening of the
Drude peak. In the quasi-thermal scenario, δR/R(ω, T ) turns from positive to negative at ω̄p.

These results open the way for probing the dynamics of the dielectric function over a wide
energy range, above and below ω̄p, allowing to discriminate between the non-thermal (δTe�δTb)
and quasi-thermal (δTe'δTb) scenarios and directly measure the time necessary for the heating
of the bosonic excitations.
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3.2. The bosonic function and the relaxation dynamics
The key point to analyze the time-resolved data is that the same bosonic function Π(Ω)
obtained from the extended Drude model (see Eq. 9) controls the temporal dynamics of
the energy exchange between QPs and bosons, as pointed out by P. Allen in Ref. [34].
This model, introduced for simple metals and referenced as the ”effective-temperature model”,
can be extended to capture the more complex physics of cuprates, including the strong
coupling with some Cu-O optical phonons. Formally, the total bosonic function can be written
as Π(Ω)=I2χ(Ω)+α2F (Ω)SCP+α2F (Ω)lat, where I2χ(Ω) refers to the bosonic excitations of
electronic origin at the effective temperature Tbe, α2F (Ω)SCP to the small fraction of strongly-
coupled phonons (SCPs), e.g., buckling and breathing Cu-O optical modes, at TSCP[16] and
α2F (Ω)lat to all other lattice vibrations at Tlat, including acoustic and Raman-active optical
phonons.

A set of four coupled differential equations can be used to represent the following physical
processes: a short laser pulse, with power density (absorbed) p, impulsively increases the effective
electronic temperature of the QPs with a specific heat Ce=γeTe (γe=π2NcN(εF )k2

b/3, Nc being
the number of cells in the sample and N(EF ) the density of states of both spins per unit cell).
Te will then relax through the energy exchange with all the coupled degrees of freedom that
linearly contribute to the total Π(Ω)=I2χ(Ω)+α2F (Ω)SCP+α2F (Ω)lat. The rate of the energy
exchange among the different populations is given by [34]:

∂Te
∂t

=
G(I2χ, Tbe, Te)

γeTe
+
G(α2FSCP , TSCP , Te)

γeTe
+
G(α2Flat, Tlat, Te)

γeTe
+

p

γeTe
(13)

∂Tbe
∂t

= −G(I2χ, Tbe, Te)
Cbe

(14)

∂TSCP
∂t

= −G(α2FSCP , TSCP , Te)
CSCP

(15)

∂Tlat
∂t

= −G(α2Flat, Tlat, Te)
Clat

(16)

where
G(Πi, Ti, Te) =

6γe
π~k2

b

∫ ∞
0

dΩΠi(Ω)Ω2[n(Ω, Ti)− n(Ω, Te)] (17)

with Πi=I2χ, α2FSCP , α2Flat and n(Ω, Ti)=(eΩ/kBTi − 1)−1 the Bose-Einstein distribution at
the temperatures Ti=Tbe, TSCP , Tlat. The specific heat (CSCP ) of SCPs is proportional to their
density of states and is taken as a fraction f of the total specific heat, i.e., CSCP=fClat.

Combining the four temperature model (4TM, Eqs. 13-17) with the extended Drude model
(Eqs. 5,8,9,11), provides a full picture of the dynamics of δR/R(ω, Tbe, TSCP , Tlat), in which
Tbe(t), TSCP (t) and Tlat(t) are functions of the time variable t and their dynamics is controlled
by the three different ratios G(Πi, Ti, Te)/Ci, where Ci=Cbe, CSCP and Clat.
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Te~Tb

Te»Tb

Figure 4. Relative reflectivity variation, i.e. δR/R(ω, t)=(Rexc(ω, t)-Req(ω))/Req(ω), as a
function of the probe photon energy and delay between the pump and probe pulses. The data
have been taken on an optimally-doped Y-Bi2212 sample at room temperature. For further
details, see Ref. [5]. The maximum δR/R(ω, t) at t=0 is calculated in the quasi-thermal (black
line; Te'Tb) and non- thermal (yellow line; Te�Tb) scenarios, using the parameters obtained
from the fit to the equilibrium measurements. The red dots are the δR/R(ω, t=0) measured by
time-resolved optical spectroscopy.

4. Disentangling the electronic and phononic contributions to the bosonic function
Figure 4 reports the δR/R(ω, t), as measured through non-equilibrium spectroscopy on
optimally-doped Y-Bi2212 samples at T=300 K, versus time (t, x-axis) and frequency (ω, y-
axis). Some worthwhile features emerge from the data.
Already on the very short timescale (<100 fs), δR/R(ω, t) is negative below 1 eV and positive
above 1 eV. The red dots are the values of δR/R(ω, t = 0), i.e., the maximum reflectivity
variation versus the probe wavelength. The data are well reproduced by the reflectivity variation
calculated in quasi-thermal conditions (δTe'δTb) through the EDM. It is worth noting that
no signature of a change in the plasma frequency, characteristic of the non-thermal scenario
(δTe�δTb), is detected within the time resolution of the experiment. Hence, it is possible to
conclude that, already on the 100 fs timescale, the QPs are thermalized with some bosonic
excitations participating to Π(Ω). The fast timescale of this thermalization implies a very large
coupling and a relatively small specific heat. This finding strongly suggests that this process
involves bosonic excitations of electronic origin and is consistent with the scattering time τ(ω)∼1-
5 fs estimated from the equilibrium optical conductivity measurements reported in Figure 2.
The temporal dynamics at fixed wavelength, i.e., δR/R(t), is characterized by two decay times
(∼200 fs and ∼1 ps), universally measured in time-resolved experiments [35, 36]. The faster
dynamics is related to the coupling of QPs to SCPs, controlled by the α2FSCP part of the
bosonic function and by CSCP , while the slower dynamics is attributed to the coupling of QPs
to all other lattice modes and it is controlled by α2Flat and Clat.
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A quantitative analysis of the data can be carried out by using the combination
of the four temperature model (4TM, Eqs. 13-18) and of the extended Drude model
(Eqs. 5,8,9,11), previously discussed. The different contributions to Π(Ω) are extracted
by fitting the calculated δR/R(ω, t) to the time- and frequency-resolved reflectivity data,
reported in Figure 4. Considering that the energy distribution of phonons is limited to
<90 meV, we assume that, for Ω>90 meV, Π(Ω)'I2χ(Ω). Within this assumption, the
functional dependence of δR/R(ω, t) on I2χ(Ω), α2F (Ω)SCP and α2F (Ω)lat is simplified as a
parametric dependence on three coefficients pi, where I2χ(Ω)=p1Π(Ω<90 meV)+Π(Ω>90 meV),
α2F (Ω)SCP=p2Π(Ω<90 meV) and α2F (Ω)lat=p3Π(Ω<90 meV). Considering the constraint
that Π(Ω)=I2χ(Ω)+α2F (Ω)SCP+α2F (Ω)lat (Π(Ω) being the total glue function extracted from
equilibrium optical spectroscopy and reported in Figure 1) and fixing the values Ce/Te=γe=10−4

Jcm−3K−2 and Clat=2.27 Jcm−3K−1, the parameters phase-space of the model is significantly
narrowed, allowing to unambiguously haul out the different contributions to Π(Ω) and to
estimate Cbe and CSCP . For further details, see Ref. [5].

The analysis of the δR/R(ω, t) demonstrates that the entire high-energy part and ∼46% of
the peak at ∼60 meV instantaneously thermalize with the QPs at a temperature Tbe'Te. The
spectral distribution and the estimated value of the specific heat of these excitations (Cbe<0.1Ce)
support their electronic origin. The α2F (Ω)SCP is estimated to be ∼34% of the peak at ∼60
meV, corresponding to ∼17% of the total Π(Ω), while α2F (Ω)lat provides ∼20% of the peak.

The measured values of the QPs-boson couplings can be used to estimate the upper bound
for Tc, expected for each subset of the bosonic function. The maximal critical temperatures
attainable are calculated assuming that Πb(Ω) entirely contributes to the d-wave pairing and
fixing the pseudopotential µ∗=0. In the strong-coupling formalism, the critical temperature for
d-wave pairing in a Fermi liquid with µ∗=0, is approximately given by [6]:

Tc = 0.83Ω̃ exp[−1.04(1 + λi)/gλi] (18)

where lnΩ̃=2/λi
∫∞

0 Πb(Ω)lnΩ/ΩdΩ, λi=2
∫

Πi (Ω) /Ω dΩ is the electron-boson coupling constant
and g∈[0,1] is a parameter that accounts for the d-wave nature of the superconducting gap. The
upper bound g=1 is used in the following.
We summarize the main results:
-The coupling to bosons of electronic origin is λe−be=2

∫
I2χ(Ω)/Ω dΩ=1.1±0.2. This value

corresponds to a maximal Tc=105-135 K.
-The coupling to strongly-coupled phonons (most likely breathing and buckling Cu-O optical
modes) is λe−SCP=2

∫
α2F (Ω)SCP /Ω dΩ=0.4±0.2. This value is in complete agreement with

the values measured on similar materials via different techniques, such as time-resolved photoe-
mission spectroscopy [16], time-resolved electron diffraction [18] and single-color high-resolution
time-resolved reflectivity [37]. The maximal critical temperature estimated considering only
SCPs as the glue is Tc=2-30 K.
-The coupling to all other phonons is λe−lat=2

∫
α2F (Ω)lat/Ω dΩ=0.2±0.2, corresponding to

Tc=0-12 K.
The large error bars in the values of λe−be, λe−SCP and λe−lat include: i) the experimental
uncertainty in the pump fluence and other experimental parameters; ii) the possibility of adding
to the 4TM a term that accounts for the anharmonic coupling of SCP to the lattice; iii) the
possible overestimation of λSCP and λlat by a factor 8/5 [38], in the extreme case that the
electron-electron scattering time (τe−e) is much larger than the electron-phonon scattering time
and the energy exchange between the QPs and bosons begins before the establishment of a
quasi-equilibrium fermionic population at Te + δTe.

Non-equilibrium optical spectroscopy allows disentangling the electronic and phononic
contributions to the total bosonic function Π(Ω) of a cuprate superconductor. The strength
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of the coupling to bosons of electronic origin and its spectral distribution can account alone
for the high-critical temperature (Tc=96 K) of the system. This supports the description of
high-temperature superconductivity in cuprates in terms of a generalized Eliashberg formalism,
in which the attractive interaction is mediated by virtual bosonic excitations of electronic origin,
such as spin fluctuations or current loops.

5. Opening of a pseudogap and failure of the extended Drude model
In the calculation of the self-energy in Section 2.3, a constant density of states at the Fermi
level has been considered. Although this approximation is reliable at T=300 K in optimally
and overdoped systems, it fails dramatically as the temperature and the doping decrease and a
pseudogap opens in the electronic density of states. A further evolution of the EDM, accounting
for a non-constant electronic density of states, has been developed by Sharapov and Carbotte
[39], and has been used to analyze spectroscopic data at equilibrium [40]. In this model, the
imaginary part of the electronic self energy is given by:

ImΣ(ω, T ) = −π
∫ ∞

0
Π(Ω){Ñ(ω + Ω, T ) [n(Ω, T ) + f(ω + Ω, T )] +

+ Ñ(ω − Ω, T ) [1 + n(Ω, T )− f(ω − Ω, T )]}dΩ
(19)

while ReΣ(ω, T ) can be calculated through the Kramers-Kronig relations. To mimic the opening
of a gap, the normalized density of states Ñ(ω, T ) can be written in the following form [40]:

Ñ(ω, T ) =


Ñ(0, T ) + [1− Ñ(0, T )]

(
ω

∆pg

)2
for |ω| 6 ∆pg

1 + 2
3 [1− Ñ(0, T )] for |ω| ∈ (∆pg, 2∆pg)

1 for |ω| > 2∆pg

(20)

Where ∆pg is the energy gap width, while Ñ(0, T ) is the gap filling. In the top-right inset of
Figure 5 we report Ñ(ω, T ) for the values ∆pg=40 meV and Ñ(0, T )=0.7.

Replacing Eqs. 9 and 11 with Eqs. 19 and 20 it is possible to calculate the δR/R(ω, t)
induced by the pump pulse, even in the presence of a pseudogap.
In particular, three different relevant processes can be analyzed:
a) the impulsive heating of bosons at a temperature Tb higher than the equilibrium temperature
T0 of the system. A quasi-thermal scenario, with Te'Tb, and T0=100 K is assumed. The
calculated δR/R(ω, t = 0), reported in Figure 5 (black line), is very similar to the reflectivity
variation obtained in the case of a constant density of states at T=300 K (see Figure 4) and is
related to the impulsive increase of the scattering rate and broadening of the Drude peak;
b) the impulsive filling of the pseudogap, as a consequence of the photoinjection of excess
excitations. The δR/R(ω, t = 0) is calculated assuming that the value Ñ(0,T) is impulsively
quenched from 0.7 to 0.9. The corresponding change in the density of states is shown in the
top-right inset of Fig. 5. The result (see blue curve in Figure 5) is very different from the
δR/R(ω, t = 0) expected for an impulsive heating of the bosons. Very similar results are obtained
by assuming the closing of the gap (∆pg<∆pg0) instead of its filling;
c) the impulsive decrease of the total Π(Ω). Although α2F (Ω)SCP and α2F (Ω)lat are expected
to be doping- and temperature-independent, I2χ(Ω) could increase as the doping and the
temperature decrease because either new magnetic excitations coupled with QPs emerge in
the pseudogap phase [9, 41] or electronic correlations induce a non-Fermi liquid like increase
of the self-energy at the antinodes. δR/R(ω, t = 0) is calculated by assuming a small quench
of the peak at 60 meV of the bosonic function (bottom-right inset of Fig. 5). The result (red
solid line) is reported in Figure 5 and can be rationalized in terms of an impulsive decrease of
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Figure 5. δR/R(ω, t=0) calculated in the case of: impulsive heating of the fermonic
quasiparticles and bosonic excitations (black line), impulsive filling of the pseudogap (blue
line), impulsive quench of the electron-boson coupling (red line). The right insets qualitatively
show the change of the density of states, Ñ(ω), and of the total glue, Π(Ω), assumed in the
calculation of δR/R(ω, t=0). The equilibrium temperature T0=100 K and the same Π(Ω) as the
one determined at T=300 K have been used.

the coupling and consequent narrowing of the Drude peak, that is, the opposite effect to the
transient heating of bosons.

In conclusion, we have shown that the use of non-equilibrium optical spectroscopy can
be extended to doping and temperature regimes in which a pseudogap opens and electronic
correlations strongly affect the electronic properties of the system.

6. Conclusions and Perspectives
Non-equilibrium optical spectroscopy is important and effective for investigating the physics of
the cuprate superconductors and, more in general, of strongly correlated electron materials.
Adding the temporal degree of freedom to the frequency resolution of equilibrium optical
spectroscopy, allows disentangling the electronic and phononic contributions to the Eliashberg
Bosonic Function Π(Ω) in a prototypical cuprate, i.e. optimally-doped Y-Bi2212. Our results
demonstrate that, in principle, the strength of the coupling of quasiparticles to bosons of
electronic origin can account for the high-critical temperature of the system (Tc=96 K). This
result supports a description of high-temperature superconductivity in cuprates in terms of an
attractive interaction, mediated by virtual bosonic excitations of electronic origin, where the
most prominent candidates are spin fluctuations and loop currents. Furthermore, the analysis of
the data obtained from non-equilibrium optical spectroscopy relies on a formalism (the Extended
Drude model) that can be easily extended to more complex cases, e.g., systems with a gap in
the density of states. This is very promising for further experiments aimed at investigating the
elusive nature of the region of the cuprate phase diagram, in which a ”pseudogap”in the density of
states is present. Finally, the techniques described here can be easily extended to other complex
materials, such as different classes of transition-metal oxides and iron-based superconductors.

These new experimental and theoretical tools, developed to investigate the electronic
properties of correlated materials out of equilibrium, open intriguing perspectives for the next-
years materials science. The modeling of the interaction of ultrashort light pulses with correlated
materials is still at its infancy. The use of the ”effective”temperatures and of the extended Drude
models to describe the non-equilibrium dynamics on the sub-ps timescale has been proved to be
a very effective tool to carry out a quantitative analysis of the data and single out the different
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contributions to the pump-induced modification of the dielectric function. Nonetheless, these
approximations cannot account for other important processes that play an important role in the
femtosecond dynamics of strongly correlated materials. In particular:
-the origin of the interplay between high-energy Mott-like excitations at 1.5-2 eV and the
onset of high-temperature superconductivity, recently demonstrated by non-equilibrium optical
spectroscopy [2], is still an open question directly related to the nature of the superconducting
phase in cuprates.
-the k-space distribution of the nascent population, after interaction with a femtosecond light
pulse, can have strongly non-thermal features, such as an excess of excitations at the antinodes
[17]. This feature could provide the access to novel non-thermal phases [42, 43, 44, 45, 46], in
which superconductivity can be controlled by means of light pulses.

The joint effort of emerging theoretical tools, like non-equilibrium DMFT [47, 48] and
time-dependent Gutzwiller approach [49, 50] and time-resolved experiments probing different
physical properties, like time-resolved optical and photoemission spectroscopies and time-
resolved electron diffraction, will provide the key to understand the role of the electronic
correlations in controlling the ultrafast electronic properties in unconventional superconductors
and transition-metal oxides.
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