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We study how the energy and momentum resolution of angle-resolved photoemission spectroscopy
(ARPES) affects the linewidth, Fermi crossing, velocity, and curvature of the measured band struc-
ture. Based on the fact that the resolution smooths out the spectra, and therefore acts as a low-pass
filter, we develop an iterative simulation scheme which compensates for resolution effects and allows
the fundamental physical parameters to be accurately extracted. By simulating a realistic band
structure, we have verified that this method works for an energy resolution up to 100meV and a
momentum resolution equal to twice the energy resolution scaled by the Fermi velocity. Our analysis
acquires particular relevance in the hard and soft X-ray regimes, where a degraded resolution limits
the accuracy of the extracted physical parameters, and therefore opens a path to study how the
electronic excitations are modified when the ARPES probing depth increases beyond the surface.

PACS numbers: 79.60.-1, 73.20.At

I. INTRODUCTION

The electronic excitations at the surface of solids
can differ from those in the bulk because the three-
dimensional translational symmetry—inherent to the pe-
riodic arrangement of atoms that constitutes a solid—
is broken.!™* This highlights the need for experimental
techniques that can probe the evolution of the electronic
excitations from surface to bulk, and provide reliable in-
formation about the bulk electronic structure. Angle-
resolved photoemission spectroscopy (ARPES) can be
such a probe, owing to the possibility of progressively
increasing the probing depth by varying the photon en-
ergy from the UV to the soft and hard X-ray regimes.>*°
In addition to an increased bulk sensitivity, ARPES
at high photon energies also enables the study of the
fully-developed three dimensional dispersion in the bulk,
extraction of element-specific electronic information by
means of resonant photoemission spectroscopy, probing
the quantum interference between the decay of photoex-
cited core-holes and the excitations around the Fermi
level, and gaining access to free-electron final states for
the photoexcitation process.® However, in varying the
photon energy from the UV to X-ray regimes, and based
on current technical capabilities of ARPES, we face a
critical dichotomy for the experimental study of elec-
tronic excitations in novel complex materials: on the one
hand, working with UV photons achieves the highest en-
ergy and momentum resolutions, but also provides the
highest sensitivity to the surface electronic structure; on
the other hand, the soft and hard X-ray regimes probe
deeper into the bulk, avoiding potential surface-related
complications,>® but with worse resolution.

In the UV-regime, the energy and angular resolutions
Aw~1meV and Af~0.1° achieved by ARPES allow the
extraction of the electronic self-energy for electrons with
binding energy w < 10meV with respect to the Fermi
energy Er,”® and also the study of the opening of super-
conducting gaps as small as ~1meV and their momen-

tum dependence along the normal state Fermi surface.”
For example, the use of UV lasers has allowed the mea-
surement of the superconducting gap of CeRus with a
record-high energy resolution of Aw=0.36 meV.'® How-
ever, the information obtained in this regime is mainly
representative of a material’s surface due to the short
inelastic mean free path of the photoexcited electrons.®
Instead, soft and hard X-rays probe deeper into the bulk,
but the resolution is degraded by a factor of 10-to-100 as
compared to the UV-regime. This resolution degrada-
tion affects the observed energy—momentum dispersion
relation €, and electronic lifetime, and limits our ability
to observe and analyse the low-energy (i.e. w < 0.2eV)
electronic excitations in solids.

As for the origin of this resolution degradation, we
note that in ARPES experiments the total energy reso-
lution Aw is given by the sum in quadrature of electron-
analyzer and photon-beam contributions. In the soft
and hard X-ray regime, which requires the use of syn-
chrotron radiation to attain the necessary high photon
flux and energy, the ultimate energy resolution is typi-
cally limited by the beamline monochromator contribu-
tion, Ahv, defined by its resolving power R,,=hv/Ahv.
State-of-the-art soft X-ray beamlines can achieve a re-
solving power as good as R,, ~ 33,000 for photon ener-
gies hv~1keV, corresponding to an ultimate energy res-
olution of Ahy ~30meV.!! As for the total momentum
resolution Ak, this is mainly determined by the angular
resolution of the detector and the kinetic energy of the
photoelectrons.>!? For a Af ~ 0.1° angular resolution,
the momentum resolution varies from Ak~4x10~4A™"
in the UV-regime (hv =~ 16eV) to 3x 10~3A™" in the
X-ray regime (hv~900eV).

Attempts to mitigate the effects of poor energy and
momentum resolution on the determination of the un-
derlying physical parameters of a system can be clas-
sified into three groups: i) comparison between experi-
mental results and theoretical calculations where the ex-
perimental resolutions are included;'® ii) deconvolution



methods, such as Lucy-Richardson or Wiener filters,'*

to reduce the effects of the resolution broadening before
any further analysis is performed;!%'6 iii) the combina-
tion of a one-dimensional fitting routine with the convolu-
tion with an instrumental resolution function.!”>'® Meth-
ods in the first group involve a theoretical description
of the excitations and are therefore model dependent,
while those in the second require a high signal-to-noise
ratio since otherwise they would be prevented altogether
by the noise magnification during the deconvolution pro-
cess. The third approach is based on a phenomenological
description of the ARPES data; it does not demand the
development of a specific model or high signal-to—noise
ratio, and will be the one followed here.

In this paper, we present a systematic study of how
momentum and energy resolutions affect the observed
dispersion and lifetime of the electronic excitations. By
performing an analysis of momentum distribution curves
(MDCs), obtained as constant energy cuts of the ARPES
intensity data, we verify that the momentum resolution is
responsible only for an energy-independent contribution
to the MDC linewidth, provided it is smaller than the
energy resolution scaled by the quasiparticle velocity (we
also note that the MDC analysis is only valid for weakly
momentum-dependent self-energies). This observation
allows us to concentrate on the effects of the energy res-
olution alone: although the latter hampers a straight-
forward extraction of the physical quantities when it is
larger than 25meV, we show that those can be recov-
ered using an iterative algorithm, which belongs to the
phenomenological third approach mentioned above. As
will be discussed later, this new method — called iterative
deconstruction algorithm — is based on the observation
that the main effect of the energy resolution is to act as
a low-pass filter on the ARPES signal.

II. SPECTRAL FUNCTION

We start by describing our phenomenological model.
The intensity I(k,w) of the ARPES signal as a function
of electron momentum k and energy w is written as:>1719

I(k,w) = |Mif|? [A(k,w) f(w,T) + B] ® R(Ak, Aw), (1)

where M, represents the matrix element which accounts
for the selection rules for the optical transition between
initial and final states, A(k,w) is the single-particle spec-
tral function describing the electronic excitations in the
solid, f(w,T) is the Fermi-Dirac distribution describ-
ing the statistical electronic population at temperature
T for states with energy w with respect to the chemi-
cal potential, and B is a background. These quantities
are convolved with the instrumental resolution function
R(Ak, Aw), where Ak and Aw are the total energy and
momentum experimental resolutions. In this study we
will neglect quantum interference effects? due to the ma-
trix elements |M;|?, which depend on photon polariza-
tion and energy, by assuming a constant value; this is

equivalent to considering a system where only a single

initial-to-final-state transition is allowed. Similarly, we

also assume a step-like background B for simplicity.
The spectral function A(k,w), describing the single-

particle excitation spectrum, can be written as:

1
Alhyw) = 1 2k w) .
T w—eb — ¥ (k,w)]” + [Z(k,w)]

(2)

where the self-energy X (k,w) = ¥'(k,w) +iX"(k,w) cap-
tures the many-body correlation effects on the electronic
excitations, and ei represents the bare-band dispersion.
The effects of the self-energy are two-fold: the real part
of the self-energy renormalizes the bare-band dispersion
€’ into the quasiparticle dispersion e} = €} — X'(k,w),
and the imaginary part ¥”(k,w) describes the reduction
in the lifetime of the single-particle excitations and the
corresponding increase of the peak width in energy.

For a weakly momentum-dependent self-energy, the
spectral function may be further simplified by replacing
Y (k,w) with X(w), thus obtaining:

Alk,w) = & Pw)

. 3
T w — €f]® + [D(w))? @

In this case the electron self-energy may be extracted
more straightforwardly from the ARPES spectra through
Lorentzian fits of the MDCs,>2! even without any a pri-
ori knowledge of the bare-band €?.2%23 However, the
apparent quasiparticle dispersion €] and peak widths
[(w) = —Y"(w)/v?, where v? = deb /Ok is the bare-band
velocity, will be affected by both momentum and energy
experimental resolutions.

We establish here an analogy between the instrumental
resolution R(Ak, Aw) and a low-pass filter by consider-
ing the influence of resolution in the detection process.
When an electron with energy w and momentum k enters
the detector, the instrumental resolution is determined
by the probability of detecting it with energy w’ and mo-
mentum k’. This probability distribution, represented
by R(Ak,Aw) in Eq. 1, decays as |w—w'| and |k—k/|
increase. As a result, the ARPES signal is proportional
to the photoemitted electron distribution convolved with
the instrumental resolution function R(Ak, Aw). The ef-
fect of the instrumental resolution can be modelled as a
low-pass filter because the resolution effectively smooths
out the spectra, suppressing variations of the signal that
have a frequency in energy/momentum higher than the
resolution itself. Furthermore, the functional form of the
experimental resolution R(Ak, Aw) can be approximated
by a Gaussian profile,?*?® and within this approxima-
tion the instrumental resolution acting upon the signal is
equivalent to a Gaussian filter.

One can show that, when the broadening due to the
energy resolution scaled by the quasiparticle velocity is
larger than the corresponding broadening due to the mo-
mentum resolution, the net effect of the momentum res-
olution in the MDC analysis is to increase the effective
linewidth by an energy-independent value. In particular,



for momentum-independent self-energies the MDC line-
shape can be described by a Lorentzian profile,?6 which
is modified into a Voigt profile by the convolution with
a Gaussian resolution function in momentum.2” Both
curves are difficult to distinguish experimentally for low-
to-medium signal-to-noise ratios since the largest differ-
ence is in the tails of the profiles, away from the peak
position. For this reason, in the rest of the manuscript
we restrict the analysis to the case Ak = 0; note, how-
ever, that we have verified that a finite Ak does not alter
the results of our analysis when Ak < 2Aw/vf, where
vp is the quasiparticle Fermi velocity. We also note that
this upper limit on the momentum resolution does not
imply an experimental limitation on the maximum value
of v that can be measured by this technique because,
for a given momentum resolution, higher values of v{
can be accessed by decreasing experimentally the energy
resolution. Also, this condition does not imply that dif-
ferent results should be obtained between UV and X-ray
regimes because energy and momentum resolutions scale
approximately at the same rate with photon energy and,
in turn, the resolution ratio Aw/Ak remains comparable.

Under these conditions — and contrary to the momen-
tum resolution — the energy resolution modifies the en-
ergy dependence of the parameters obtained from the
MDC analysis since it mixes spectral weight from states
at different energies. We find that the effects of the en-
ergy resolution Aw, as depicted in Fig. 1, are: i) a distor-
tion of the functional form of the resulting dispersion €}
with respect to the intrinsic eZ in an energy region Aw
around Ef, as was reported previously;'” ii) a shift of
the peak positions close to Er, which results in a differ-
ent Fermi crossing kj;229 iii) a modification of the Fermi
velocity from vf, to vf:; iv) an increase of MDC linewidth,
I'(w), inversely proportional to the slope of the band dis-
persion; v) a reduction of the average-rate-of-change of
the linewidth with energy.

III. RESOLUTION EFFECTS
A. Linear quasiparticle dispersion

To illustrate the resolution effects alluded to above,
we simulate the spectral function A(k,w) using a linear
quasiparticle band €] = vi(k — kf) with a corresponding
Fermi liquid energy-dependent width I'(w) = T'g + I's w?,
where I'g and I'; account for impurity and electron-
electron scattering, respectively. As described in Eq. 1,
the spectral function is multiplied by the Fermi-Dirac
distribution and then convolved with a Gaussian energy
resolution function with unit-area and full-width half-
maximum (FWHM) equal to Aw. An example of such
simulation is shown as a gray scale plot in Fig. 1, with
the linear dispersion €} in blue. Here we used an energy
resolution Aw=>50meV, a momentum resolution Ak=0,
a Fermi velocity v = 1eVa/m, and linewidth parame-
ters 'y = 0.17/a and I'y = 10eV %7 /a. We note that
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FIG. 1. (Color online) Effect of energy resolution on a lin-

ear dispersion with Fermi-liquid linewidth. The gray scale
ARPES intensity is obtained from Egs. 1 and 3 for T=10K,
Aw=50meV, and Ak =0, using the quasiparticle dispersion
€l = vi(k — k) (blue line) and linewidth T'(w) = I'g + T2 w?,
with v = 1eVa/m, Ty = 0.17/a, and T2 = 10eV27/a
(all quantities including k expressed in units of 7/a). The
extracted dispersion e€j, (green line) is obtained from the
Lorentzian fit of the MDCs; Fermi momentum ki and ve-
locity v from a linear fit of €, up to EFr — Aw (red line).

throughout the paper all dispersion-related quantities —
including the electron momentum k — are expressed in
units of 7 /a, where a is the lattice parameter; also, the
temperature was set to 10 K for all simulations.

Fitting the corresponding MDCs with a Lorentzian
profile we obtain the dispersion €} (green line in Fig. 1),
which is identical to the quasiparticle dispersion €} only
when Aw =0. When the energy broadening part of the
resolution function is larger than the width of the Fermi-
Dirac distribution (Aw >4kgT),'" €} deviates from the
linearly dispersive band €} for energies closer to Ep than
Aw, showing an upturn above this energy. The inter-
play of energy resolution and spectral cut-off due to the
Fermi-Dirac distribution is at the origin of these effects,
as well as of the spectral weight induced above Er and
extending up to Erp + Aw. Practically, the deviation of
¢ from €} in the range |Ep — Aw| defines the maximum
binding energy at which the band dispersion can be ac-
curately traced; this also provides a method to estimate
the energy resolution directly from the data: Aw corre-
sponds to the energy relative to Er where the upturn in
€;, has its onset.

At binding energies below the Aw range around FEg,
the extracted band dispersion €} is linear but is shifted
compared to €}, as shown by the comparison of green
and blue lines in Fig. 1. This shift is caused by the inter-



play of the energy resolution with the quadratic energy-
dependence of the MDC linewidth, which induces an
asymmetry in the MDC profiles; when this asymmetric
lineshape is fitted with a Lorentzian function, the result
is a shift in peak position. This would not occur if there
were only an energy-independent term in the momen-
tum width I'=Ty, or if the energy resolution broadening
were reduced to Aw=0 (as shown below, a similar shift
of the peak positions also occurs for non-linear disper-
sions). As reported previously,?®2?? in Fig. 1 we can also
see that as a consequence of this shift, the extrapolated
Fermi momentum kj, moves with respect to k., affecting
the determination of the Fermi surface in an MDC anal-
ysis [this will be discussed in greater detail in relation to
Fig. 2(b)].

Next we study the variation, due to the energy reso-
lution, of the extracted Fermi velocity vy, as obtained
from a linear fit of the dispersion € up to Er — Aw.
The deviation of the Fermi velocity v from the intrinsic
vph depends on the interplay of temperature 7', linewidth
I', and energy resolution Aw. Note that for zero en-
ergy resolution, v = v{ independent of the other pa-
rameters, which demonstrates that its deviation is due
to a finite Aw. The relative velocity vf = vf/vh in-
creases quadratically with the energy resolution; and for
a given energy resolution, v increases quadratically with
temperature, semi-logarithmically with the input Fermi
velocity vf, and semi-logarithmically with the energy-
independent momentum width I'y. In absolute terms,
the deviations of vf; due to temperature (up to 100 K)
and energy-independent momentum width term Ty (up
to 2Aw/v) are at most 6%. As expected, the largest
contribution is due to Aw. The increase of the extracted
Fermi velocity vj; with energy resolution Aw can be un-
derstood by the smoothing effect mentioned in the low-
pass filter analogy: Aw introduces an effective cut-off
for the maximum rate-of-change observable in the en-
ergy distribution curves (EDCs); this EDC broadening,
together with the quadratic energy dependence of the
linewidth, translates into an increase of vj; inferred from
the MDC analysis. As a limiting case, we expect that
v — 00 when Aw — oo.

B. Quadratic quasiparticle dispersion

Following the same approach, we also expect that the
effect of energy resolution on a parabolic band disper-
sion is to reduce its curvature. This point is exemplified
in Fig. 2, where we consider the change of the extracted
spectroscopic quantities due to energy resolution for the

quasiparticle dispersion €] = %(k — k)2 + vk (k — ki)
and a Fermi-liquid linewidth I' = 'y +T'sw?. From the
ARPES intensity I(k,w) in Fig.2(a), calculated for the
parameter values indicated in the caption, we extract the
quasiparticle dispersion €}, (green line) affected by the en-
ergy resolution; this can be tracked up to Er — Aw before

it deviates from the intrinsic €] dispersion. By fitting
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FIG. 2. (Color online) Effect of energy resolution on a

parabolic dispersion with Fermi-liquid linewidth. (a) The
gray scale ARPES intensity is obtained from Egs.1 and 3,
for T=10K, Aw=50meV, and Ak=0, using the quasiparti-
cle dispersion €] = %(k — k&2 + vi(k — kL) (blue line) and
linewidth T'=T'g+T2w?, with vi =0.2eVa/7, To =0.17/a,
h?/2m = —0.2eV (a/7)?, To=0.17/a, and T2 =10eV 27 /a
(all quantities including k expressed in units of 7/a). The
green line is the dispersion ¢}, extracted from the MDC anal-
ysis; the red one is the result of a quadratic fit of €} at bind-
ing energies deeper than Fr — Aw. (b) Energy-resolution
dependence of the parameters (solid red symbols) kg, vs, and
7?2 /2m*, and (c) T} and T'3, as determined by fitting the band
dispersion €;, [green line in (a)] obtained from an MDC analy-
sis of the ARPES intensity in (a); open symbols are the results
of the iterative deconstruction algorithm discussed in Sec.IV.
(d) The linewidth I'* deviates from the input linewidth I" (red
lines), even in the case of a purely constant input I'=T"g (black
lines).

€;, with a parabolic dispersion outside of the Aw energy
range, we obtain the red line in Fig. 2(a), from which
we can extract estimates for the Fermi momentum kg,
Fermi velocity v§, and quasiparticle curvature h?/2m*.
As shown by the red filled symbols in Fig.2(b), these
extracted parameters vary quadratically with energy res-
olution relative to the input values ki, v, and A?/2m*,
which are instead recovered for Aw = 0. The variation
of the extracted Fermi velocity vi and curvature h?/2m*
with Aw follows the guideline previously stated that the
energy resolution tends to smooth out the ARPES spec-
tra: it reduces the overall curvature and increases the
Fermi velocity [see Fig. 2(b)]. As a result, the extracted
Fermi momentum kj. (decreases) increases with Aw for
(electron-) hole-like Fermi surfaces.

As for the energy-resolution dependence of the ex-
tracted linewidth I'* =T + I'3w?, in Fig. 2(c) we observe



that the relative variation of the energy-independent I'§
and quadratic I'5 are non-monotonic with the energy res-
olution Aw (see red filled symbols, and again Aw=0 for
the input values). In addition, the energy-dependence
of T'* is modified by a term inversely proportional to
the slope of the quasiparticle dispersion €}. To illustrate
this, we consider first an energy-independent momentum
width I' = I'y as a simpler case. The MDC Lorentzian
profile of width I'y is modified into a Voigt lineshape
by the convolution with a Gaussian function of width
04(E) x Aw/(0ek/0k)|.,. Remarkably [see black lines
in Fig. 2(d)], the extracted I'* exhibits an energy depen-
dence although the input linewidth I' = T’y is constant in
energy. In case of the quadratic linewidth I'=T + I'yw?
[see red lines in Fig. 2(d)], the extracted I'* still presents
a parabolic dependence on energy for w < Fp — Aw, but
deviates considerably from the input linewidth T'.

IV. ITERATIVE DECONSTRUCTION
ALGORITHM

So far, we have analysed the variation with energy res-
olution of the quantities kf, vy, h%/2m*, T}, and T,
which parametrize the electronic dispersion € and life-
time I'* obtained from an MDC analysis of the ARPES
intensity. We have shown that these variations can be un-
derstood as a cut-off on the maximum rate-of-change of
the ARPES intensity imposed by the experimental res-
olutions, in analogy with a low-pass filter effect. This
becomes more pronounced the stronger the energy de-
pendence of the quasiparticle dispersion. For example,
as shown in Fig. 3(a) and (b), the resolution-induced de-
viations of the extracted Fermi velocity vj; and especially
curvature |h?/2m*| increase with the input parameters;
this observation can be generalized to each dispersion pa-
rameter p, to show that the absolute difference between
extracted and intrinsic values, |p—p*|, increases with p.

Based on this observation we devise an iterative
method to retrieve the intrinsic parameters p, starting
from the p* extracted — and affected by the experimental
resolution — through the MDC analysis of the measured
ARPES intensity I(k,w). The iterations are initialized
defining the first set of parameters to be identical to the
measured ones, p; = p*. Next, using this set of p; and the
known energy resolution, a simulated ARPES intensity
map is generated; new values for the parameters p} can
then be extracted, now through an MDC analysis of the
simulated intensity. Note that these newly determined
p; will be further away from the intrinsic parameters p
than the input values p; = p*, due to the energy reso-
lution broadening having effectively been accounted for
twice. By taking the difference A; = p; — p}, and sub-
tracting it from the measured p*, we define the starting
parameters for the next iteration: py = p* — A;. As a
result of the second iteration, we obtain the new differ-
ence Ay = py —p3 and then the input values for the third
iteration: p3 = p* — Ay. These iterations are repeated
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FIG. 3. (Color online) Iterative deconstruction algorithm to

retrieve the intrinsic parameters p from the p* as measured
— and modified by the energy resolution. At a constant en-
ergy resolution Aw =50 meV, the energy-resolution-induced
deviations of (a) Fermi velocity vgp and (b) band curvature
|2 /2m*| from the corresponding input values increase with
the magnitude of the latter; note that here all other parame-
ters are the same as in Fig. 2(a). The iterative deconstruction
algorithm is illustrated in (c), and shows that starting from
the measured parameters p1 = p*, the iterative input (p;) and
extracted (pj) parameters progressively converge towards the
true (p) and measured values (p*); note that here A; = p;—p; .
The iteration is stopped when the difference between p; and
p* is smaller than an appropriate tolerance factor.

until the difference between the output values p; and the
measured p* is below a chosen tolerance factor. At this
point, the input parameters p; of the last iteration, can
be considered representative of the true values p. The

key iterative steps, with :=1,2, ..., are thus
b1 = p*v
A =pi—p;, (4)

Piv1 = P — A,

Note that the difference A; is always combined with
the measured parameters p* for all iterations; this is nec-



essary because the information of the true values p is en-
coded in the measured values p* together with the energy
resolution Aw. This iterative deconstruction algorithm
is illustrated in Fig.3(c), and shows how the input (p;)
and extracted (p}) parameters progressively converge to-
wards the true (p) and measured (p*) values. By apply-
ing the iterative deconstruction algorithm to the exam-
ple discussed before of a parabolic band dispersion with
a Fermi-liquid linewidth, we find that the systematic er-
ror induced by the energy resolution is reduced to < 3%,
as shown by the open circles in Fig.2(b) and (c). Fi-
nally, one should note that this method only relies on
the monotonous increase of |p; — pf| with p;, and not on
its specific functional form.

V. CONCLUSIONS

We systematically studied the effect of energy resolu-
tion on the measured MDC linewidth and quasiparticle
dispersion parameters, such as Fermi velocity, Fermi mo-
mentum, and band curvature, as extracted from ARPES
data. In particular, we considered the case of linear and
parabolic dispersions, with a quadratic Fermi-liquid-like
scattering rate. Starting from the observation that the
energy resolution acts as a low-pass filter, we developed
an iterative deconstruction algorithm to extract the un-

derlying physical parameters, compensating for the pro-
gressive loss of energy resolution upon increasing of pho-
ton energy from the UV to hard X-ray regime. This
method provides an avenue for studying the electronic
excitations with enhanced bulk sensitivity and to follow
their bulk-to-surface evolution, with the highest degree
of fidelity despite the reduced instrumental energy res-
olution, i.e. with an accuracy better than the energy
resolution itself. Note however that this method relies
on the trend of the MDC lineshape at energies at least
twice as large as the energy resolution Aw; therefore,
it cannot provide information on features pertaining to
a scale smaller than Aw. This method could be gener-
alized to other parametrizations and techniques where
energy resolution produces similar effects, such as angle-
resolved bremsstrahlung isochromat spectroscopy; how-
ever, its applicability should be verified case by case.
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