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Surface-enhanced charge-density-wave instability
in underdoped Bi2Sr2-xLaxCuO6þ d
J.A. Rosen1,*, R. Comin1,*, G. Levy1,2, D. Fournier1, Z.-H. Zhu1, B. Ludbrook1, C.N. Veenstra1, A. Nicolaou1,2,

D. Wong1, P. Dosanjh1, Y. Yoshida3, H. Eisaki3, G.R. Blake4, F. White5, T.T.M. Palstra4, R. Sutarto6, F. He6,

A. Fraño Pereira7,8, Y. Lu7, B. Keimer7, G. Sawatzky1,2, L. Petaccia9 & A. Damascelli1,2

Neutron and X-ray scattering experiments have provided mounting evidence for spin and

charge ordering phenomena in underdoped cuprates. These range from early work on stripe

correlations in Nd-LSCO to the latest discovery of charge-density-waves in YBa2Cu3O6þ x.

Both phenomena are characterized by a pronounced dependence on doping, temperature and

an externally applied magnetic field. Here, we show that these electron-lattice instabilities

exhibit also a previously unrecognized bulk-surface dichotomy. Surface-sensitive electronic

and structural probes uncover a temperature-dependent evolution of the CuO2 plane band

dispersion and apparent Fermi pockets in underdoped Bi2 Sr2-x Lax CuO6þ d (Bi2201), which is

directly associated with an hitherto-undetected strong temperature dependence of the

incommensurate superstructure periodicity below 130 K. In stark contrast, the structural

modulation revealed by bulk-sensitive probes is temperature-independent. These findings

point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface

nesting. This discovery is of critical importance in the interpretation of single-particle

spectroscopy data, and establishes the surface of cuprates and other complex oxides as a rich

playground for the study of electronically soft phases.
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T
he underdoped cuprates, with their pseudogap phenom-
enology1–3 and marked departure from Fermi liquid
behavior4, have led to proposals of a wide variety of possi-

ble phases ranging from conventional charge and magnetic order
to nematic and unconventional density-wave instabilities5–27.
Despite the extensive theoretical and experimental effort, the
generic phase behavior of the underdoped cuprates is still a
matter of heated debate, primarily because of the lack of an
order parameter that could be universally associated with
the underdoped regime of the high-Tc cuprates (HTSCs). For
instance, early on, evidence was obtained for long-range spin
and charge order in the form of uniaxial stripes6. This
phenomenology has been detected in compounds belonging to
the La2-x-y (Sr,Ba)x(Nd,Eu)yCuO4 family6,28–30, namely Eu-LSCO,
Nd-LSCO, LBCO, and recently also pristine LSCO (where stripe
order appears as a near-surface effect31), and it is historically
associated with the family-specific reduction of superconducting
Tc near 12% doping, the so-called ‘1/8-anomaly’.

More recently, high-field quantum oscillations17, Hall
resistance32 and thermoelectric transport33 results on under-
doped YBa2Cu3O6þ x (YBCO) were interpreted as a signature of a
magnetic field-induced reconstruction of the normal-state Fermi
surface, suggesting that stripe order and/or a charge-density-wave
(CDW) phase might be more general features of HTSCs’
underdoped regime. Interest in this direction has been
burgeoning with the latest NMR34, resonant X-ray scattering
(REXS) and X-ray diffraction (XRD) results35–37, providing direct
evidence for a long-range incommensurate CDW in YBCO
around 10–12% hole doping, which further shows a suppression
for ToTc and an enhancement with increasing magnetic field.
Although this phenomenon bears some differences with respect
to charge stripes, a common intriguing aspect is that they both are
electronically driven forms of ordering and appear to compete
with superconductivity.

If a CDW phase in underdoped cuprates is universal, it should
be observable in compounds with similar doping levels regardless
of their structural details. In addition, it is of fundamental
importance to connect structural observations (XRD and REXS)
to those of electronic probes, such as angle-resolved photoemis-
sion (ARPES) and scanning tunneling (STM) spectroscopy.
However, for YBCO this might be prevented altogether by the
polar instability and self-doping of the (001) surface; in fact,
ARPES studies have not yet directly detected a folding of the
electronic band structure4,38 carrying the signature of a
symmetry-broken CDW state as otherwise seen in either
quantum oscillation17 or XRD experiments35–37. To broaden
the search and attempt this connection, the most interesting
family is the one of Bi-cuprates which, owing to their extreme
two-dimensionality and natural cleavage planes, have been
extensively studied by single-particle spectroscopies39,40.
ARPES and STM have provided rich insight into the electronic
properties of the CuO2 plane, including signatures of broken
symmetries10,13,14,16,24,27,26,41 and hints of a ‘pseudogap phase-
transition’26, although the identification of a bona fide order
parameter has remained elusive. More specifically, in regards to a
potentially underlying CDW instability, pristine Bi-cuprates have
been shown to exhibit multiple superstructures, and while some
of these modulations originate from the structural mismatch
between BiO and CuO2 lattice planes and hence are non-
electronic in origin39,42–45, others have been recognized by STM
to evolve strongly with doping and magnetic field11,12,20,25;
however, their relationship to the ‘structural’ superstructures and
the Fermi surface has remained unclear. Our experimental results
will provide new and surprising insight in this direction.

Here, we study the structural and electronic properties of
Bi2Sr2-xLaxCuO6þ d (Bi2201), whose crystal structure exhibits a
stacking of well-spaced, single CuO2 layers in the unit cell and a
highly ordered superstructure45, by means of surface-sensitive
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Figure 1 | Temperature dependence of the nodal electronic structure of UD15K Bi2201. (a,b) Sketch of one quadrant of the tetragonal Brillouin zone for

T¼ 100 and 10 K, respectively; indicated are the expected Fermi surfaces belonging to the main band (M) and its replicas due to different Q1 and Q2

superstructure vector combinations (solid lines), as well as all the corresponding backfolded features due to the orthorhombicity of the crystal

(dashed lines, so-called ‘shadow-bands’). The nodal strip in (a,b) highlights the region measured by ARPES with various photon energies and temperatures

in (c,e,f), and the six bands detected for this experimental geometry and polarization (the photon polarization is set in the plane of detection to suppress all

but the main band and its replicas). MDCs at EF for 10 and 100 K are directly compared in (d). Also note that in (c-f), as throughout the paper, momentum

axes are expressed in units of 2p/a* and 2p/b*, where a� ffi b� ffi
ffiffiffi

2
p
�3:86 Å refer to the orthorhombic unit cell of Bi2201 (3.86 Å is the in-plane

Cu-O-Cu distance).
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photoemission spectroscopy (ARPES) and low-energy electron
diffraction (LEED) probes, as well as bulk-sensitive resonant
(REXS) and non-resonant XRD. We focus on the temperature
dependence of the electronic structure from under (pC0.12,
Tc¼ 15 K, UD15K) to nearly optimal doping (pC0.16, Tc¼ 30 K,
OP30K). We discover a temperature-dependent evolution of the
CuO2 plane band dispersion and apparent Fermi surface pockets,
which is directly associated with the evolution of the
incommensurate superstructure. Surprisingly, this effect is
limited to the surface (ARPES–LEED), with no corresponding
temperature evolution in the bulk (XRD–REXS). The quasilinear,
continuous variation of the surface modulation wavelength 2p/Q2

from B66 to 43 Å, below a characteristic TQ2
C130 K, provides

evidence for a surface-enhanced CDW instability, driven by the
interplay of nodal and antinodal Fermi surface nesting.

Results
Orthorhombic and modulated structure of the Bi-cuprates.
An important aspect to consider for the study of Bi-cuprates is
that these materials are not structurally tetragonal, but instead
orthorhombic, with two inequivalent Cu atoms per CuO2

plane39,42–45. This leads to a 45� degree rotated and
ffiffiffi

2
p
�

ffiffiffi

2
p
�1

larger unit cell, as compared with the tetragonal one, with lattice
parameters a� ffi b� ffi

ffiffiffi

2
p
�3:86 Å, where 3.86 Å is the planar

Cu-O-Cu distance (cD24.9 Å; for both structures). Note
that throughout the paper we refer to the orthorhombic unit
cell, with momentum axes expressed using the reciprocal lattice
units (r.l.u.) 2p/a*, 2p/b* and 2p/c*. The orthorhombicity and
consequent band backfolding have been shown to be responsible
for the observation of the so-called ‘shadow bands’44, a replica
of the hole-like CuO2 Fermi surface centered at the G point,
thus settling a longstanding debate on their possible
antiferromagnetic origin46. In addition, the presence of
incommensurate superstructure modulations, arising from a
slight lattice mismatch between the BiO layers and the CuO2

perovskite blocks47, further adds to the complexity of the Fermi
surface. As for single-layer Bi2201 specifically, while a single Q1

superstructure vector is known to give rise to additional folded
replicas along the orthorhombic b* axis at optimal doping (OP)39,

two distinct structural modulations with Q1 and Q2 wavevectors
arise with underdoping (UD). If these complications are not fully
taken into account in analyzing ARPES data, the resulting highly
complex Fermi surface appears to be composed of a small set of
closed pockets45.

Probing the surface with ARPES and LEED. We begin with the
discussion of the UD15K Bi2201 ARPES data from along the
nodal direction presented in Fig. 1. As demonstrated in previous
work45, and here sketched in Fig. 1a,b for a simpler identification
of the various bands, the high crystallinity of these samples allows
resolving the Fermi surface of Bi-cuprates to an unprecedented
level of detail: the main (M) CuO2-plane band (black solid line),
its Q1 and Q2 superstructure replicas stemming from the
BiO-layer-induced incommensurate superstructure (red and
blue solid lines), and all the corresponding backfolded bands
due to the orthorhombicity of the crystal (dashed lines).
Furthermore, as shown in Fig.1c for UD15K at T¼ 100 K, and
emphasized in the highlighted nodal strip in Fig. 1a, by taking
advantage of the polarization-dependent selection rules45, one
can selectively suppress the redundant backfolded bands to
highlight more cleanly the behavior of main (M) and Q1–Q2

bands. The ability to simultaneously detect all superstructure
replicas allows us to uncover—in the temperature dependence—a
new and unprecedented aspect of the data: while the position of
the main CuO2 band is completely temperature-independent,
between 100 and 10 K there is a significant shift in momentum of
only (and all) the Q2-related bands [see Fig. 1e,f, and Fig. 1d for
the direct comparison between 10–100 K momentum distribution
curves (MDCs) at EF]. This is summarized in the 10 K Fermi
surface sketch of Fig. 1b, which illustrates that a critical
consequence of this effect is a seeming volume change of all
ostensible Fermi surface pockets defined by the various
backfolded bands, despite the fact that the actual number of
carriers is not changing at all.

The ARPES results are complemented by a detailed analysis of
the superstructure diffraction vectors from LEED. On UD15K at
6 K, rather than individual Bragg peaks (Fig. 2a), the experiment
gives lines of Q1 and Q2 fractional spots along the orthorhombic
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Figure 2 | Temperature dependence of the superstructure modulations of UD15K Bi2201. (a) Typical LEED pattern measured at T¼6 K. The

rectangular box in (a) highlights the region shown in detail for T¼ 150 and 6 K in (b) and (c), respectively. In (b,c) symbols represent the data from a

vertical cut along the center of the box in (a), while blue and red curves are a Voigt fit of the Q1 and Q2 superstructure peaks. (d) Magnitude of the

Q1 and Q2 superstructure vectors in Å� 1 versus temperature, as inferred from LEED and ARPES-MDC analysis at 21 eV photon energy (and in agreement

with ARPES from 7 to 41 eV, see Fig. 1). The yellow and red/blue boxes indicate the temperature integration window of each data point, for ARPES (5 K)

and LEED (3 K), respectively, and the error bars show the goodness of fit for the Voigt profiles determined from a w2 test. Note that, for the almost

temperature-independent Q1, half of the actual value is plotted for a more direct comparison with Q2 and only the LEED data are shown (the ARPES

data are equivalent and thus omitted).
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b* axis. From the fit of the LEED data (Fig. 2c), we obtain for
the magnitude of the superstructure wavevectors, the values

Q6K
1 ¼ 0:285 � 0:015 Å

� 1
and Q6K

2 ¼ 0:142 � 0:015 Å
� 1

, corre-
sponding to B1/4 and 1/8 in r.l.u., respectively. Also LEED, on
this highly resolved superstructure, reveals a remarkable
temperature dependence (Fig. 2b,c). Consistent between LEED
and ARPES–MDC analysis (Fig. 2d), while Q1 is virtually
temperature-independent from 5 to 300 K, Q2 increases with

respect to its high-temperature value Q300K
2 ¼ 0:095 � 0:015 Å

� 1

(B1/12 in r.l.u.) below a TQ2
C130 K. The evolution of Q2—as

seen by both electronic and structural probes—implies an inter-
unit-cell structural and/or electronic modulation, with a wave-
length 2p/Q2 evolving from 66 to 44 Å (that is, from 12 to 8� b*)
upon cooling from 130 down to 5 K.

Bulk sensitivity with XRD and REXS. The surface sensitivity
of ARPES and LEED calls for an investigation of the same phe-
nomenology by means of light-scattering techniques, which are
known to probe materials deeper in the bulk. In the following
discussion, we will refer to reciprocal space coordinates as H*, K*
and L (representing the reciprocal axes of, respectively, a*, b* and
c), and reciprocal lattice units will be used. At all photon energies,
it is possible to clearly identify the supermodulation associated
with Q1. In particular, REXS maps taken on UD15K Bi2201 at the
Cu, La, and O soft X-ray edges all exhibit a clear enhancement at
this wavevector (see Supplementary Note 1 for details). This
confirms that the corresponding modulation is present through-
out the unit cell, and therefore also in the CuO2 plane, explaining
the strong folded replicas observed in ARPES. However, mod-
ulations with longer periods are not detected. These can be
probed by XRD maps measured at 17 keV photon energy, thus
revealing a much larger portion of reciprocal space, as shown in
Fig. 3a–c for T¼ 300 K. The H*–K*section in Fig. 3a, which can
be compared with the LEED map in Fig. 2a, also features a
multitude of superstructure satellite peaks along K*(the Bragg
peaks being the most intense ones). Figure 3b displays the K*–L
sections for H*¼ 1, 2, which reveal the presence of new features
exhibiting a peculiar elongation along L and period-8 modulation
along K* with positions given by K*¼ (2nþ 1)/8. The latter are
therefore incompatible with the near period-4 modulation asso-
ciated with Q1 or any of its harmonics (also note that no similar

features are found for H*¼ 0, thus explaining the lack of period-8
rods in soft X-ray REXS, which due to kinematic constraints can
only probe a reduced portion of reciprocal space). Different
orders of this period-8 modulation can be seen when zooming in
to the H*¼ 2 slice in Fig. 3c, with their assignment given more
schematically in Fig. 3d. These are located at positions
Qij

2 ¼ nG � iQ1 � jQ2, where G is a reciprocal lattice vector,
Q1¼ 1/4ûK*, and Q2¼ 1/8ûK* (corresponding to the ARPES and
LEED low-temperature Q6K

2 value). Notably, the same features
can be seen in resonant scattering at Cu and Bi deeper edges (that
is, in the hard X-ray regime). Figures 3e,f show corresponding
K*–L sections (H*¼ 1), taken at the Cu-K edge at low (6 K) and
high (120 K) temperature, respectively. Additional data for the
Bi-L3 edge and the temperature-dependent XRD maps are shown
in Supplementary Note 1.

The intensity of the Qij
2 rods is B1 order of magnitude smaller

than the most intense Q1 peak, within the same K*–L sections.
Considering the large probing depth of hard X-rays, this intensity
ratio is too large to identify these as crystal truncation rods, or
ascribe them to surface modulations. These period-8 spots
therefore originate from an additional supermodulation that
must be present in the bulk of the material, and characterized by
poor c axis coherence, as the elongated structure suggests. On the
other hand, these features exhibit long-range order in the a*–b*
plane, as evidenced by their well-defined shape in H*–K*
sections, with correlation lengths x4100� b*.

To summarize the findings from XRD and REXS on UD15K,
no significant temperature dependence is observed between 300
and 6 K in all scans, neither in the peak positions nor in the
relative intensities. Altogether, these results suggest a scenario
involving the presence of an additional bulk supermodulation
with a well-defined periodicity along b* (B8 lattice periods),
stable over a broad range of temperatures, and characterized by
large correlation lengths within the (001) planes, but poor
coherence perpendicular to them.

Discussion
The combination of surface (ARPES and LEED)- and bulk (XRD
and REXS)-sensitive probes has enabled us to establish that Q1

and Q2 superstructure modulations are present both in the bulk
and at the surface of underdoped Bi2201, close to 1/8 doping
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(UD15K). In addition, we have uncovered an unprecedented
bulk-surface dichotomy in the temperature dependence of the
superstructure modulations and corresponding electronic struc-
ture. While no dependence is observed for the Q1 and Q2

superstructure in the bulk and also for Q1 at the surface, we
detected a pronounced temperature evolution associated with the
surface Qsurf

2 . As for the doping dependence of this phenomenon,
while the Q1 modulation survives all the way to optimal doping
(Q1C0.280 and 0.273 Å� 1 for UD23K and OP30K, respectively),
the Q2 modulation is substantially weakened and temperature-
independent for UD23K (p¼ 0.14, Q2C0.135 Å� 1), and can no
longer be detected in either LEED or ARPES on OP30K
(p40.16). This is discussed in the Supplementary Note 1 based
on the doping and temperature-dependent LEED, ARPES and
X-ray data.

The dependence of the Q1=Qsurf
2 ratio versus temperature for

UD15K is summarized in Fig. 4a and allows some important
phenomenological observations: (i) the temperature dependence
of Qsurf

2 below TQ2
shows commensurability with the static Q1

modulation, as evidenced by the Q1=Qsurf
2 ratio varying from 3 to

2 over a range of 130 K. (ii) The evolution of Q1=Qsurf
2 exhibits a

possible transient lock-in behavior when the wavelength of the
Qsurf

2 modulation is commensurate with the orthorhombic lattice:
2p=Qsurf

2 ¼ n�b�, with n ranging from 12 to 8, as marked by red
arrows in Fig. 4a (see also Supplementary Note 2 for a more
extended discussion). A similar albeit more pronounced behavior
has been observed for charge-stripe order in La2NiO4þ d from
neutron scattering48. (iii) In analogy to what was reported for
manganites49, the continuous evolution of incommensurate wave
vectors over a wide temperature range hints at competing
instabilities, which can lead to a soft electronic phase. (iv)
Finally, the fact that at low-temperature (LT) also Qsurf ;LT

2 ’
Qbulk

2 indicates a direct connection between the bulk and surface
modulations.

We have succeeded in reproducing the details of the observed
CDW instability and its temperature evolution using a two-fold
analysis (detailed in Supplementary Notes 2 and 3) involving: (i)
the evaluation of the electronic susceptibility [through the zero-
temperature, zero-frequency Lindhard function w(Q, O¼ 0)]; and
(ii) a mean-field Ginzburg–Landau model based on an ad-hoc
phenomenological free-energy functional F[r], typical of

that applied to CDW systems. The electronic susceptibility w(Q,
O¼ 0) has been calculated for various doping levels starting from
an electronic structure comprised of main, shadow and Q1-folded
bands (see Fig. 4b) and is shown for p¼ 0.12, 0.14 and 0.16 in
the right-hand side panel of Fig. 4a. Two peaks occur in the
susceptibility along the K* direction in reciprocal space at
QK*¼ 0.095 and 0.140 Å� 1 for p¼ 0.12, closely matching the Q2

supermodulation vectors for UD15K. This allows associating
Qsurf ;HT

2 ’ Q1=3 and Qsurf ;LT
2 ’ Q1=2 with nodal and anti-

nodal Fermi surface nesting, that is, Qsurf ;HT
2 ¼QN

K� ¼ 0:095 and

Qsurf ;LT
2 ¼QAN

K� ¼ 0:140 Å
� 1

(these denominations designate the
region in k-space where bands overlap maximally, as pictorially
shown in Fig. 4c,d). These nesting instabilities are very sensitive
to the hole doping, especially for the steeper nodal dispersion; for
p¼ 0.14 and 0.16, the nodal peak abruptly vanishes, while the
antinodal is split—and therefore ceases to be commensurate to
Q1—and gradually reduced and broadened towards optimal
doping, yielding a progressively less pronounced instability. These
findings qualitatively explain the experimentally observed pro-
gressive weakening of the features associated with Q2 as hole
doping is increased (discussed in Supplementary Note 1).
Ultimately, this establishes the specific high- and low-temperature
values observed for the surface CDW modulation on UD15K,
Qsurf ;HT

2 and Qsurf ;LT
2 , to be associated with competing Fermi

surface nesting instabilities of the Q1-modulated orthorhombic
crystal structure. Most importantly, this identifies the tempera-
ture-dependent Q2 surface CDW as a phenomenon limited to the
underdoped regime, near 1/8 doping, consistent with our
experimental observations.

As for the origin of the observed temperature dependence, the
evolution of Q1=Qsurf

2 (ratio of wavevector magnitude) is well
captured by a phenomenological Ginzburg–Landau description
based on the minimization of the surface free-energy functional
F[r], and is thus consistent with an incipient CDW instability at
the surface. This is shown by the comparison of LEED and
theoretical results (red trace) for the evolution of Q1=Qsurf

2 in
UD15K, shown in Fig. 4a. Commensurability to the susceptibility
peaks (Q1=Qsurf

2 ¼ 2 and 3) underpins the low- and high-
temperature limits, while the free energy F[r], in absence of a
bulk potential, provides a modeling of the surface, and accounts
for the temperature dependence of the Q2 wavevector. In
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Ginzburg–Landau mean-field theory, this can be understood as a
consequence of the temperature-dependent harmonic content of
a non-sinusoidal CDW (see Supplementary Note 2 and
Supplementary Discussion for more on this point), which here
coincides with the Q1/Q2 commensurability effects.

In our Ginzburg–Landau description, we can also include the
effect of the bulk potential VB associated with the ‘static’ Qbulk

2
modulation as determined by XRD (VB¼ |VQ2

|, with VQ2
as

defined in Supplementary Note 2). As shown by the simulated
colored traces in Fig. 4a, incorporating this potential progressively
causes the CDW to lock in to the bulk structural modulation
wavevector Qbulk

2 ¼Q1=2 at VBB3.0, thus suppressing the
temperature dependence. The two regimes VB¼ 0 and VB43
represent the temperature-dependent-surface and temperature-
independent-bulk limiting cases, providing agreement with the
results of ARPES–LEED on the surface and XRD–REXS for the
bulk. Intermediate values of VB describe the subsurface region,
which shows a CDW with reduced dependence on temperature,
and instability towards first-order lock-in transitions to the Qbulk

2
wavevector (see dashed traces in Fig. 4a).

In conclusion, the temperature-dependent evolution of the
CuO2 plane band dispersion and Q2 superstructure on the highly
ordered Bi2201 surface can be understood to arise from the
competition between nodal and antinodal Fermi surface nesting
instabilities, which give rise to a dynamic, continuously evolving
wavevector. This also indicates that such a remarkable electron-
lattice coupling is directly related to the ordinary, static Q1

superstructure—as a necessary precursor to Fermi surface nesting
at the low- and high-temperature Qsurf

2 —and giving rise to
commensurability effects. As the nodal nesting-response is very
sensitive to the hole doping, this also explains why the surface
temperature dependence disappears towards optimal doping.
This establishes the importance of surface-enhanced CDW
nesting instabilities in underdoped Bi-cuprates, and reveals a
so-far undetected bulk-surface dichotomy. The latter is respon-
sible for many important implications, such as the temperature-
dependent volume change of all apparent Fermi surface pockets
in ARPES, and could have a hidden role in other temperature-
dependent studies.

Methods
Sample preparation. For this study, we used two underdoped (x¼ 0.8, pC0.12,
UD15K and x¼ 0.6, pC0.14, UD23K) and one optimally doped (x¼ 0.5, pC0.16,
OP30K) Bi2Sr2� xLaxCuO6þ d single crystals (p is the hole doping per planar
copper away from half-filling). The superconducting Tc¼ 15, 23 and 30 K,
respectively, were determined from in-plane resistivity and magnetic susceptibility
measurements. For UD15K, we found T*C190 K, based on the onset of the
deviation of the resistivity-versus-temperature curve from the purely linear
behavior observed at high temperatures.

ARPES and LEED experiments. ARPES measurements were performed at UBC
with 21.2 eV photon energy (HeI), and at the Elettra synchrotron BaDElPh
beamline with photon energy ranging from 7 to 41 eV. In both cases, the photons
were linearly polarized and the polarization direction—horizontal (p) or vertical
(s)—could be varied with respect to the electron emission plane. Both ARPES
spectrometers are equipped with a SPECS Phoibos 150 hemispherical analyzer;
energy and angular resolution were set to 6–10 meV and 0.1�. The samples were
aligned by conventional Laue diffraction prior to the experiments and then
mounted with the in-plane Cu-O bonds either parallel or at 45� with respect to the
electron emission plane. LEED measurements were performed at UBC with a
SPECS ErLEED 100; momentum resolution was set to 0.01 Å� 1 by using a low
electron energy of 37 eV, at which value the signal intensity reaches a maximum.
During the LEED measurements, the samples were oriented with the orthorhombic
b* axis, vertical in reference to the camera, and rotated by 7� in the horizontal plane
to detect more spots. For both LEED and ARPES, the samples were cleaved in situ
at pressures better than 5� 10� 11 torr. The detailed temperature-dependent
experiments were performed on the UBC ARPES spectrometer, which is equipped
with a five-axis helium-flow cryogenic manipulator operating between 2.7 and
300 K. The ARPES (LEED) data were acquired at 0.5 frame per s (30 frame per s),
while the sample was cooled at a continuous rate of 0.1 K min� 1 (1 K min� 1).
The ARPES (LEED) data were averaged over 1,500 (5,400) images, resulting in

ARPES spectra (LEED curves) with a temperature precision of 5 K (3 K).
The higher temperature accuracy achieved in LEED stems from its ten-fold
signal-to-noise ratio as compared with ARPES.

Light scattering experiments. Resonant elastic soft X-ray measurements were
taken using a four-circle diffractometer at the REIXS beamline at the Canadian
Light Source, working at the O-K (EphB530 eV), La-M4,5 (EphB836 eV) and Cu-
L2,3 (EphB930 eV) absorption edges. Hard X-ray scans were performed using a psi-
8 diffractometer (8-circle) at the Mag-S beamline at BESSY, working at the Cu-K
(EphB8.9 keV) and Bi-L3 (EphB13.2 keV) deep edges. Both soft and hard X-ray
scattering measurements were performed in the temperature range 15–300 K. XRD
reciprocal space maps were acquired using an Agilent Technologies SuperNova A
diffractometer. The data were collected at 300 K and 100 K using Mo-Ka and Cu-Ka

radiation, respectively. The excitation energies used for these experiments
correspond in turn to approximate attenuation lengths (a) of B150 nm (Cu-L2,3),
6 mm (Cu-K) and 12 mm (Mo-Ka). In all cases, samples were pre-oriented using
Laue diffraction and mounted b* and c axes in the scattering plane. In order
to expose an atomically flat (001) surface, in- and ex- situ cleaving procedures
were adopted for soft and hard X-ray measurements, respectively.
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3. Hüfner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a

high-temperature superconductor? Rep. Prog. Phys 71, 062501 (2008).
4. Fournier, D. et al. Loss of nodal quasiparticle integrity in underdoped

YBa2Cu3O6þ x. Nat. Phys 6, 905–911 (2010).
5. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the

magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989).
6. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S

Evidence for stripe correlations of spins and holes in copper oxide
superconductors. Nature 375, 561–563 (1995).

7. Varma, C. M. Non-fermi-liquid states and pairing instability of a general model
of copper oxide metals. Phys. Rev. B 55, 14554 (1997).

8. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a
doped mott insulator. Nature 393, 550–553 (1998).

9. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the
cuprates. Phys. Rev. B 63, 094503 (2001).

10. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in
the pseudogap state of a high-Tc superconductor. Nature 416, 610–613 (2002).

11. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle
states surrounding vortex cores in Bi2Sr2CaCu2O8þ d. Science 295, 466–469
(2002).

12. Howald, C., Eisaki, H., Kaneko, N. & Kapitulnik, A. Coexistence of periodic
modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8þ d.
Proc. Natl Acad. Sci. USA 100, 9705–9709 (2003).

13. Vershinin, M. et al. Local ordering in the pseudogap state of the high-tc

superconductor Bi2Sr2CaCu2O8þ d. Science 303, 1995–1998 (2004).
14. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in

Ca2-xNaxCuO2Cl2. Science 307, 901–904 (2005).
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T=
30

0 
K

H*=2H*=1

L (r.l.u.)

16

12

8

0.40.20
K* (r.l.u.)

T=
10

0 
K

0

6

12

18

0 2 4
0

6

12

18

0 2 4

UD15K - X-ray Diffraction - (K*L) slices

c d

a b

T=120 K

T=6 K

UD15K - Resonant X-Ray Scattering - (1KL) slices

Cu-K edge - 8.98 keV

K* (r.l.u.)

Bi-L3 edge - 13.4 keV

16

12

8

T=6 K

e

f

g

S
oft X

-ray edges

H*=0

0.05 0.15 0.25

T=18 K

T=200 K
La-M5
Cu-L3
O-K

h

Q1

Q2
bulk

Q1

Q2
bulk

Q1

Q2
bulkH*=1 H*=1

H*=1

Supplementary Figure S2: X-ray results on UD15K Bi2201. Left panels: K∗-L sections of the X-ray diffraction maps, taken
at T = 100 K, H∗ = 1 (a), and H∗ = 2 (b) – and T = 300 K, H∗ = 1 (c), and H∗ = 2 (d). Right panels: resonant hard X-ray
scattering K∗-L maps (H∗=1) with photon energy tuned to the Cu-K edge, T =6 K (e) and T =120 K (f) – and Bi-L3 edge,
T =6 K (g). (h) Scattering scans along K∗ for the soft X-ray edges: La-M5 (red, L=2.05), Cu-L3 (yellow, L=2.05) and O-K
(blue, L=1.1), acquired at 18 K (top) and 200 K (bottom). Note: in (h) the intensity is plotted on a logarithmic scale, and the
18 K profiles have been offset for clarity.



2

-2

6

210

0

2

4

8

f q/A
q

-2

0

2

q1
- q1

+

B/Aq=

q/Q0

Supplementary Figure S3: fq profiles for several values of B/Aq = −2, 0, 2 (blue, green, and red curves, respectively). The
shaded region shows the range of wavevectors, q−1 → q+1 for the 1st harmonic, for which the system can lower its energy by
having a nonzero CDW amplitude.

0.3

0.4

VQ2/A1=
-1 -0.5

0

-1.50.5

300250200150100500

q/
Q

0

T (K)

-3 -0.2-2-2.5

Exp. T-window

Supplementary Figure S4: The effect of the VQ2 potential for the structural bulk Q2 wavevector, showing suppression of the
temperature-dependence of the CDW wavevector. Here (VL, VQ1)=(0,−.15), and the red, magenta, orange, cyan, green, blue,
purple, and black curves correspond to VQ2/A1 = 0, -0.2 , -0.5, -1, -1.5, -2, -2.5, and -3 respectively. Black dots represent
experimental data from LEED. The jump in the wavevector for nonzero VQ2 shows the pinning of the CDW to the bulk Q2

structure near Q1/2, with complete suppression of the temperature-dependence beyond VQ2/A1 =−3.



3

0.5

0 30025020015010050
0.3

0.4

q/
Q

0

T (K)

VL=0, VQ1=0

VL=-4, VQ1=-0.15

Exp. T-window

Supplementary Figure S5: CDW wavevector obtained by numerical minimization of the free-energy for the first and third
harmonic only. The blue curve is for (VL, VQ1) = (0, 0), and the red curve has (VL, VQ1) = (−4,−.15). (A1 = 162 , A3 =
2.05×A1 , C=200 , Q0 =1). Black dots are the LEED experimental data.

Γ
Q1

Underlying FS Susceptibility

−π

−π

π

π

Γ

S-Q1+Q2
sur,HT M

−π

−π

π

π

−π
−π

π

π

0

0

χ (
Q

K
*,Ω

=
0)

0.06 0.10 0.14 0.18

a b

c d
M

Γ

M+Q1+Q2
sur,LT

QK* (Å
-1)

p=0.12
0.14
0.16

Nodal NestingAntinodal Nesting

Supplementary Figure S6: Tight-binding fit of the experimental Fermi surface (a) for underdoped Bi2201, (x= 0.8, p= 0.12).
The main band and its Q1 replicas are shown in black and blue, respectively, with folded ortho-derived features (shadow bands)
dashed. Nesting-susceptibility calculated from the tight-binding Fermi surface (b) is shown for p=0.12 (red), 0.14 (blue) and

0.16 (green). For p=0.12, there are two peaks near q=0.095 and q=0.14 Å
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The value of A1 is set by the relations shown in (b-c) for the experimental results in Supplementary Figure S5, to yield the
temperature axis of the experiment.
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SUPPLEMENTARY NOTES

Supplementary Note 1 | LEED/ARPES and X-ray doping and temperature dependence

LEED/ARPES doping and temperature dependence. The doping and temperature dependence of the Q2

superstructural modulations is shown in Supplementary Figure S1 for UD23K and OP30K samples. The appearance
of the Q2 modulation in UD23K and UD15K samples is in contrast to OP30K, where only the Q1 modulation is
observed in both LEED and ARPES. In addition, the observation of the Q2 modulation in UD23K is also at variance
with the temperature dependence discussed in the main text for UD15K, as the LEED and ARPES diffraction features
associated with the Q2 wavevector remain temperature-independent in UD23K at the value of the bulk/low-T surface
Q2 in UD15K.

Temperature-dependent X-ray scattering. X-ray diffraction (XRD) and resonant scattering (REXS) data on
UD15K as a function of temperature are displayed in Supplementary Figure S2. XRD maps show no qualitative
difference between low- [T =100 K, Supplementary Figure S2(a,b)] and high-temperature [T =300 K, Supplementary
Figure S2(c,d)]. Although the different acquisition parameters yield a slightly different contrast and signal-to-noise
ratio in the intensities, the rod-like period-8 features exhibit the same pattern, showing no evolution from 300 to
100 K. REXS data at the Cu-K edge (8.98 keV) show no signs of temperature dependence, as well [see Supplementary
Figure S2(e,f)]. The scattering map acquired on the Bi-L3 edge (13.4 keV), plotted in Supplementary Figure S2(g), is
qualitatively indistinguishable from the Cu-K edge, a signature that the associated period-8 modulation is ubiquitous
in the unit cell. The Qbulk

2 rods are absent in the soft X-ray scattering scans [Supplementary Figure S2(h)], consistently
with the XRD results for the basal plane H∗ = 0 [see Fig. 3(a) in the main text], whereas the Q1-related peak (at
H∗ ∼ 0.25) exhibit a clear enhancement at all the investigated absorption edges, thus reflecting the presence of a
well-defined near-period-4 modulation throughout the entire unit cell.

Supplementary Note 2 | Ginzburg-Landau description of a charge-density wave.

Ginzburg-Landau theory. Mean-field theory has been well utilized since the work of Landau, and has since been
expanded and applied to describe many thermal and statistical systems, which typically possess phase transitions and
ordering behavior. In particular, Ginzburg-Landau mean-field theory is used to explain the onset of a charge-density-
wave (CDW) below a critical temperature, with a wavevector and amplitude given by the microscopic details of the
problem [50-53]. Recently, Ginzburg-Landau theory was shown to be effective at describing a soft electronic phase
[49], in which an additional interplay with magnetic order leads to charge-ordering with doping- and temperature-
dependent wavelength.

To relate to the temperature-dependence of Q2 in our measurements of underdoped Bi2201, we have constructed
a similar mean-field free-energy functional F [ψ] [49-53] and solved this model based on numerical minimization of F
with respect to its order parameter ψ. The main result of this study is to connect the Q2 temperature-dependence
observed with LEED to the temperature-dependent harmonic content of the CDW. In addition, the calculation
of the Fermi surface nesting susceptibility function provides information regarding the low and high-temperature
endpoints of the observed temperature-dependence. Note that, in relation to T ∗ and the pseudogap in the underdoped
cuprates, our model does not incorporate any additional order parameter besides the CDW and a static Q1 modulation.

Mean-field free-energy. The order parameter of the model is the charge-density, which is Fourier transformed
according to the following equation:

n(x) =
∑
q

nqe
iqx . (S1)

This way the problem can be reformulated in momentum space. Only the even-order terms in F [ψ] are considered
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(due to symmetry between positive and negative CDW amplitude as described in Ref. 52), of the form:

F2 =
∑
q

fq|nq|2

fq = Aq(
q

Q0
− Q0

q
)2 +B (S2)

F4 = C

∫
n(x)4dx .

The second-order F2 term is a summation of fq, which contains a combination of a gradient-term (∝ q2) preventing
short wavelength oscillations, and a Coulomb term which screens long wavelength oscillations (∝ 1/q2), so that fq is
minimized by q=Q0, a temperature-independent wavevector set by the microscopic details. The factors Aq and C are
also temperature-independent and positive, and B is linearly dependent on temperature and changes sign at the CDW
critical temperature : B → B̃(T − TCDW) [53]. Supplementary Figure S3 shows the shape of the fq potential, which
implies that for T <TCDW the system can lower its free-energy by having nonzero CDW amplitude for wavevectors
in the range corresponding to the shaded region (i.e. when fq is negative, which requires that B/Aq<0).

Recall that the summation over wavevectors in F2 is due to the Fourier-transform of the charge-density in Eq. S1.
However, if the charge-density is a periodic function (q=2π/λ), it can be represented as a Fourier-series:

n(x) =
∞∑

j=−∞
nj e

i (jq·x), (S3)

which naturally leads to the notion of harmonics, which have shorter wavelengths corresponding to integer multiples
of the wavevector, j ∗ q. This allows us to mathematically treat a single, general waveform for the charge-density as a
superposition of these harmonics. The free-energy F2 in Eq. S2 therefore involves the summation of fq evaluated for
the harmonics. This gives terms in the free-energy ∝ fj∗q, which are minimized by wavevector q0 satisfying j ∗q0 =Q0.
Thus the fj∗q term is negative for wavevectors between the two values q±j given by:

q±j
Q0

=
1

j

√
1− 2β ± 2

√
β2 − β ; β ≡ B/4Aq . (S4)

In the quadratic term F2, the wavevectors q−j → q+j (for jth harmonic) set the range for energetically favorable CDW
amplitude, as a function of the temperature (T ∝ β in Eq. S4).

The fourth order term F4 prevents divergence of the amplitude of n(x). Together with the lack of a third-order
term in the free-energy [52], this leads to a situation where only odd harmonics of the charge-density-wave occur in
the wavevector expansion of the free-energy; for the other terms, the phase factors of the momentum representation
of n(x)4 terms do not cancel, and the integral in Eq. S2 is oscillatory and averages to zero. These considerations allow
us to rewrite Eq. S1 as:

n(x)→
∑
m

nme
imqx ; m = ±1,±3,±5, ... (S5)

Furthermore, since we expect the charge-density n(x) to be a real function, this gives the requirement that nq=n−q.
When we compute F4 in momentum-space, we obtain the following integral:

C

∫
dx

∑
m1...m4

nm1
nm2

nm3
nm4

eiqx(m1+m2+m3+m4) . (S6)

This results in the condition that m1 + m2 + m3 + m4 = 0, however since nq = n−q, we are free to switch the sign
of any mi, so that we may instead write m1 +m2 +m3 −m4 =0, and all other combinations of signs, which can be
satisified for certain combinations of positive and odd indexes mi. This yields:

F4 → C
∑

m1...m4

nm1
nm2

nm3
nm4

∼= C(
∑
i

ni)
4 ,

(i odd and positive)

(S7)
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leading to the free-energy functional that is sufficient to describe the experimental wavevector on underdoped Bi2201,
by identifying the wavevector Q0 → Q1 :

F =

(
A1(

q

Q1
− Q1

q
)2 +B

)
|n1|2

+

(
A3(

3q

Q1
− Q1

3q
)2 +B

)
|n3|2 (S8)

+ C(n1 + n3)4 .

Note that the right-hand side in Eq. S7 is written as approximate because it includes cross-terms which do not satisfy
the constraint that the subindex sum is zero, and which will cancel in the integral Eq. S6. Here we consider only
the first and third harmonics, then we just have one extra term of this kind, 4Cn33n1. In Eq. S8 we keep the full
term corresponding to the approximation in Eq. S7. This is due to the short correlation lengths observed for the
temperature-dependent wavevector in ARPES and LEED, which are connected to finite-size effects resulting in a
flattening of the free-energy near the minimum (see Ginzburg-Landau model appendix).

To compare with the experimental finding of commensurability effects in the LEED wavevector temperature-
dependence, the model of Eq. S8 is supplemented by potentials which can account for the attractive forces experienced
when the lattice is commensurate with the CDW (integer multiple of the wavelength), as well as the repulsive forces
for intermediate wavelengths (incommensurate, non-integer). Commensurability with the bulk Q2 modulation, as
found by X-ray diffraction, arises naturally by considering an additional periodic potential:

FQ2 =

∫
V (x)n(x) dx (S9)

=

∫
VQ2

eiQ2x n(x) dx ' VQ2
n1

ε+ |q −Q bulk
2 |

.

Where the additional ε term is needed to turn the singularity at q=Q bulk
2 into a finite peak, for numerical convergence,

and only includes the first harmonic, n1, as there is no need to consider higher harmonics matching Q bulk
2 , which would

lead to a first harmonic with unecessarily long wavelength (q<<Q bulk
2 ). For negative VQ2 the system is attracted to

the Q bulk
2 wavevector, which is favored when VQ2

is larger in magnitude than the energy cost from the other terms in
the free-energy. The effect of the Q bulk

2 potential, VQ2
, is shown in Supplementary Figure S4, for various strengths of

the potential. This potential causes the CDW to lock in to the bulk structural modulation wavevector (q=Q bulk
2 ),

and acts to suppress the temperature-dependence. The limiting cases VQ2 = 0 and VQ2 >> 0 represent the surface
(LEED/ARPES) and bulk (REXS/XRD) temperature-dependence, respectively. Intermediate values of VQ2 describe
the region just below the surface, which shows a CDW with reduced dependence on temperature, and instability
towards first-order lock-in transitions to the q=Q bulk

2 wavevector. An additional potential can be added to account
for the tendency of the CDW to be commensurate with the orthorhombic lattice [53]:

FL = VL
(
n21 + n23 + · · ·

)
cos(

2πG

q
) , (S10)

where G is a reciprocal lattice vector, such that with the inclusion of FL in the free-energy, the system is weakly
attracted to wavevectors for which q=G/j, for integer j, provided that VL is negative. These wavevectors correspond
to a CDW wavelength that is an integer multiple of the lattice constant, λCDW = j × b∗. A similar potential can be
included for the static Q1 modulation observed in Bi2201, which is identical except for the replacement G→ Q1; this
leads to the expression:

FQ1
= VQ1

(
n21 + n23 + · · ·

)
cos(

2πQ1

q
) . (S11)

Recall that the wavevector from the experiment shows commensurability with both the lattice and Q1. The endpoints
of the temperature-dependence occur at q=Q1/2 and q=Q1/3, and this commensurability to Q1 is already present
in the free-energy of Eq. S8. However, the additional commensurability potential in Eq. S11 accounts for a weak
repulsion on intermediate wavevectors (incommensurate with Q1).

Ginzburg-Landau theory results. Supplementary Figure S5 shows the CDW wavevector obtained by numerical
minimization of the free-energy for the first and third harmonic only, in the temperature region 0<T <TCDW. The
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parameter values A1 =162 and A3 =2.05×A1 were chosen to have TCDW ≥ 300 K, following the fact that we observe
Q2 with LEED up to room temperature, and to scale the temperature of the model to that of the ARPES/LEED
experiments (see Ginzburg-Landau model appendix). The potential VB is zero to model the surface of the crystal,
and the results for both (VL, VQ1

) = (0, 0) and (VL, VQ1
) = (−4,−.15) are shown in Supplementary Figure S5. The

VQ1
potential has a moderate flattening effect on the shape of the temperature-dependence of the CDW wavevector

between Q1/2 and Q1/3, and improves the agreement with the experiment. Additional inclusion of the lattice
commensurability potential, VL, creates inflection points in agreement with the LEED temperature-dependence.
These inflection points are larger than the experimental temperature window of the LEED data acquisition, and
are in qualitative agreement with the effect of the lattice commensurability free-energy potential, VL. The existing
quantitative discrepancies (in particular for n=9) between the data and the Ginzburg-Landau model might be related
to error in the determination of the sample temperature and the LEED wavevector in the experiment. Nevertheless,
this suggests significance in the qualitative appearance of features indicating a tendency towards commensurability
with the orthorhombic reciprocal lattice vector, and additionally the periodic lattice distortion, Q1.

Ginzburg-Landau model appendix. As mentioned in the text, the approximation in Eq. S7 involves an additional
term in the free-energy, 4Cn33n1, which is forbidden by the integration in Eq. S6. Re-including only the lowest order
term that is excluded, can be understood to originate from finite-size effects connected to the short coherence-lengths
seen in ARPES and LEED for the surface. The LEED spots have a half-width at half-maximum corresponding to
a coherence-length of ∼15Å, so that the electronic coherence-length is smaller than the Q2 wavelength (∼45Å at
low-temperature). The short LEED coherence-length could be caused by the formation of domains with random
local deviation in the Q2 value, for instance due to impurities. The finite domain variations in the integral (S6) will
reintroduce these forbidden terms, in particular the lowest order ones, that contain the longest wavelength ocillation in
the integrand of Eq. S6. This suggests that an impurity driven “finite-size” interaction between the CDW harmonics
can play a role in the soft-wavevector phase. This is also consitent with the bulk/surface dichotomy that is observed,
as the coherence lengths for Q2 from bulk X-ray measurements are an order of magnitude larger (∼500Å) than those
seen with surface-sensitive probes (∼50Å).

Supplementary Figure S7(a-c) shows that a well-shaped minimum of the free-energy occurs at a particular wavevec-
tor, q, and charge-density amplitudes, n1 and n3. In Supplementary Figure S7(a-b,d) the effect of the approximation
in Eq. S7 is shown to cause a flattening of the free-energy along the line n1 = −n3. Supplementary Figure S7(d)
shows the sharp temperature-dependence that develops due to this flattening of the free-energy. This results in a
low-temperature instability, illustrated in Supplementary Figure S8(a), which highlights the range of temperatures
and wavevectors for which the fq potentials are negative. There is a tendency to increase either n1 or n3, in the
corresponding shaded region for each wavevector, in order to lower the energy of the system. In the range of tem-
peratures for which the two potentials cannot be simultaneously negative for any wavevector, the system will have
a temperature dependent CDW wavevector resulting from the balance of the n1 and n3 terms. The amplitudes of
these terms will be opposite in sign in order to minimize the F4 =C(n1 + n3)4 energy cost, while trying to increase
(decrease) the component which has a negative (positive) potential at a given wavevector. Just below TCDW the
system can reduce its energy by having q=Q0 (Q0/3) in the case of A1>A3 (A3>A1).

There is a region in Supplementary Figure S8(a), where both fq potentials are negative, below a temperature
T ′=4A1β

′
1. In this region both n1 and n3 will increase to lower the free-energy, but they are also free to take opposite

sign in order to cancel the fourth order term energy cost. For any wavevector in the overlap region, the free-energy
can go arbitrarily negative by continuing to increase the charge-density while maintaining equal but opposite values
for the first and third harmonic, leading to divergent behavior. Including higher order harmonics does not remedy
the situation as long as the system is free to set these components to zero in the event they have a positive fq value
in this region. This creates an unphysical divergence in the CDW amplitude for q=Q′ below T ′, which also results
in a low-temperature instability that attracts the CDW wavevector to Q′ even above T ′.

Thus the experimental temperature range is scaled to the physical range T ′ < T < TCDW. This can be done with
T ′=A1∗4β′1+TCDW, for β′1 given in Supplementary Figure S8(c). To explain the high-temperature behavior, A3>A1

gives q =Q0/3 just below TCDW, and the low-temperature behavior is obtained by choosing A3/A1 to set Q′, and
choosing A1 such that T ′<0 and thus outside the physical range considered. TCDW =300 K is chosen to represent the
experimental observation of LEED diffraction peaks up to room temperature, though making this temperature higher
does not have any significant impact on the temperature-dependence, and only gives a temperature-independent
wavevector that persists at higher-temperatures. This effectively defines the temperature coefficient:

B̃ =
4A1β

′
1(A3/A1)

300
. (S12)
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Such choice provides excellent agreement with experimental data for the parameters indicated in Supplementary Figure
S5, which suggests that an impurity-driven enhancement of the CDW harmonic interaction could effectively indicate
a flat or competing free-energy landscape playing a role in the surface CDW wavevector temperature-dependence.

Supplementary Note 3 | Fermi surface Nesting.

In addition the electronic susceptibility, or Lindhard function,

χ0 =
∑
k

nF(εk+q)− nF(εk)

εk − εk+q
, (S13)

has been calculated for p= 0.12 to p= 0.16, from the tight-binding fit of the Fermi surface with hopping parameters
extracted from the experimental ARPES Fermi surface [54] to accurately reproduce nesting for this material. The
tight-binding model used for the calculation is depicted in Supplementary Figure S6(a) for p = 0.12, and includes
the main band and shadow band, plus their Q1 replicas. The calculation is performed as described in Ref. 55, and
the result is shown in Supplementary Figure S6(b). Two important nesting susceptibility peaks occur at q = 0.140

and q= 0.095 Å
−1

, which closely match the low and high-temperature values of the Q2-wavevector measured in the
experiment. The effect of doping was incorporated by a shift of the chemical potential in the tight-binding model,
thus changing the size of the Fermi surface, and resulting in the suppression of the Q1/3-peak and a gradual splitting,
weakening and broadening of the Q1/2-peak [Supplementary Figure S6(b)]. This suggests that the Q1/3 instability
only exists in a narrow range of dopings, and the Q1/2 peak in a comparatively larger range of dopings, near p=1/8.
In particular, the Q1/2-peak comes from antinodal nesting between the main band (M) and its own Q1 replica [M+Q1,
see also Supplementary Figure S6(c)], while the Q1/3-peak arises from nodal nesting between the main band (M) and
the Q1 replica of the shadow band (S−Q1), as shown in Supplementary Figure S6(d).

For the antinodal nesting related to the Q1/2-peak, the reduced coherence at the antinode (due to the opening
of the pseudogap) does not substantially affect the Lindhard function, for two reasons: (i) the main contribution to
the antinodal peak in χ(QK∗) comes from the flat topology of the Fermi surface at the antinode (making the nesting
quasi-1D); (ii) the largest antinodal nesting overlap [see Supplementary Figure S6(c)] occurs at a portion of the Fermi
surface around φ = 10◦, where spectral weight is still substantially coherent [here φ represents the polar angle in
k-space, measured from k=(π, π), with φ=0◦ corresponding to the antinode, φ=45◦ to the node]. This φ=10◦ value
lies in the proximity of the gapless portion of the Fermi surface, the so-called “Fermi arcs”, whose tips are located
around φ=15 − 20◦.

SUPPLEMENTARY DISCUSSION

There are several important features of the mean-field model described here, in relation to the nontrivial
temperature-dependence of the CDW wavevector, which arise due to interaction between the two lowest harmon-
ics. The interplay of the CDW harmonics is connected with the influence of the structural Q1 modulation on the
third CDW harmonic, 3×Qsurf,HT

2 = Q1 at higher temperatures. Flattening the free-energy near the stable minimum
results in enhanced interaction between harmonics of the surface CDW state, which is marked by a large temperature-
dependence of the CDW wavevector, whose slope increases at low-temperatures. The reduction in the 3rd harmonic
content at low-temperatures leads to a dramatic steepening of the charge-driven temperature-dependence of Qsurf,LT

2

at low-temperature, when it is near Q bulk
2 = Q1/2. This suggests that the surface experiences finite-size effects that

result in a flattening of the energy-landscape, indicating electronic phase competition (see Ginzburg-Landau model
appendix for details). Comparison to the measured wavevector from ARPES and LEED experiments gives remarkable
agreement, which is improved after including a tendency towards commensurability with the lattice parameter b∗ and
the static structure modulation Q1.

Incorporating the effect of a periodic bulk potential, with wavevector Q bulk
2 = Q1/2 as determined by X-ray

diffraction in underdoped Bi2201, results in suppression of the temperature-dependence. This suppression is related
to the Q bulk

2 modulation, which pins the CDW wavevector to the structural modulation in the underlying bulk,
resulting in temperature-dependence of the CDW wavevector occuring only near the surface, and thus leading to a
static bulk structure and charge-density wave, while the surface can evolve energetically. A nesting-driven, electronic
response peak at the Fermi energy is apparently connected to the bulk supermodulation and the surface CDW at low-
temperature (Q bulk

2 = Qsurf,LT
2 = Q1/2), and at high-temperature (Qsurf,HT

2 = Q1/3). As a final remark, we note that
the apparently weaker Q1/3 peak in the (nodal) nesting susceptibility does not necessarily correlate to the strength
of the instability, as has been noted in the chalcogenide CDW superconductors [56].
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