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Symmetry of charge order in cuprates
R. Comin1,2*, R. Sutarto3, F. He3, E. H. da Silva Neto1,2,4,5, L. Chauviere1,2,4, A. Fraño4,6, R. Liang1,2,
W. N. Hardy1,2, D. A. Bonn1,2, Y. Yoshida7, H. Eisaki7, A. J. Achkar8, D. G. Hawthorn8, B. Keimer4,
G. A. Sawatzky1,2 and A. Damascelli1,2*

Charge-ordered ground states permeate the phenomenology of 3d-based transitionmetal oxides, andmore generally represent
a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families
has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-Tc
superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in
two cuprate families: Bi2Sr2−xLaxCuO6+δ (Bi2201) and YBa2Cu3O6+y (YBCO). We detect no signatures of spatial modulations
along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order.We also resolve the
intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated
charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic
description of charge order in cuprates, and its interplay with superconductivity.

Complex oxides exhibit a mosaic of exotic electronic phases
with various symmetry-broken ground states that revolve
around three main instabilities: antiferromagnetism, charge

order and superconductivity. In particular, charge order—the
tendency of the valence electrons to segregate into periodically
modulated structures—is found in various classes of strongly
correlated 3d-oxides, such as manganites1, nickelates2 and
cobaltates3. The original discovery of period-4 stripe-like charge
correlations in the La-based materials4–7 confirmed the central
role played by charge-ordered states in the physics of underdoped
cuprates, as anticipated by earlier theoretical work8–12. Following
further indications by surface-sensitive scanning tunnelling
microscopy (STM; refs 13,14), the field was recently revived
by the detection of charge-modulated states in YBCO using
nuclear magnetic resonance15 and resonant X-ray scattering
(RXS), with wavevector Q∗ ∼ 0.31 reciprocal lattice units (r.l.u.,
used hereafter)16–21. Even more recently, this phenomenology was
confirmed in Bi-based materials (with Q∗∼0.26 and 0.3 in single-
and double-layer compounds, respectively), following observations
in both bulk/momentum space (with RXS) and surface/real
space (with STM; refs 22,23), as well as in the electron-doped
Nd2−xCexCuO4, where Q∗ ∼ 0.24 was observed by RXS (ref. 24).
These multiple experimental observations establish a ubiquitous
instability towards charge ordering in the underdoped cuprates.

The microscopic mechanisms that lead to charge order, and
govern its interplay with superconductivity and magnetism, are
key to the ultimate understanding of the multiple electronic
phases that emerge out of the interaction between charge, spin
and lattice degrees of freedom. The relevance of this electronic
instability has been extensively pointed out25,26 and recently
resurged as a prominent topic27–37, sparking an intense debate and
urging the need for further experimental investigations of the
microscopic structure of the charge-ordered state. Several important

questions—such as where charges reside and what is their local
symmetry—were recently addressed at both the theoretical27,28 and
experimental level38,39.

Here we explore the detailed momentum structure of the charge-
density-wave (CDW) order 1CDW(k,Q) using RXS, which probes
the electronic density directly in reciprocal space, with extreme
sensitivity. Our study addresses two major open questions: whether
CDW signatures in (Qx ,Qy) space are found exclusively along the
reciprocal-space directions (Q∗, 0) and (0,Q∗), or whether they are
also present along (Q∗,Q∗), as discussed in refs 27,28,31,32,34–36;
and how charges are distributed spatially, and what is the resulting
local symmetry of the ordered state27–30,36,37. In more general terms,
the first and second questions relate to the Q- (inter-unit-cell) and
k- (intra-unit-cell) dependence of the charge order, respectively.

The first part of this work, aimed at addressing the Q-structure
of1CDW, was performed on the underdoped single-layer compound
Bi2Sr1.2La0.8CuO6+δ (Bi2201-UD15K), with hole doping p∼ 0.11
and Tc=15K. This material exhibits signatures of incommensurate
CDW with wavevectors (Q∗, 0) and (0,Q∗) (Q∗=0.265) (ref. 22).
The smaller value of Q∗ allows reaching—at the Cu-L3 edge—
momenta located near (Q∗, Q∗) which in contrast are not
accessible in double-layer YBCO and Bi2Sr2CaCu2O8+δ . We
use RXS (see Methods) to selectively probe the CuO2-derived
electronic states by tuning the photon energy to the Cu-L3
absorption resonance (Fig. 1a). The corresponding experimental
results for the momentum-resolved electronic density in the
CuO2 planes are shown in Fig. 1b for the two high-symmetry
directions (H , 0) and (H , H) in the (Qx ,Qy) plane. Owing to the
presence of charge-order peaks, both along (H , 0) and (0, H),
the experimental data are compatible with both chequerboard
order (bidirectional) or alternating stripes (unidirectional). In
the case of bidirectional order, the two simplest modulation
patterns of the charge density 1ρ(x , y) with wavevector
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Figure 1 | Charge-ordering patterns and wavevectors. a, Schematics of the RXS experiment. b, Low-temperature RXS (at photon energy hν=931.5 eV)
from an underdoped Bi2201-UD15K sample, mapping reciprocal-space features along the two high-symmetry directions: (H, 0), antinodal, green
(reproduced from ref. 22, the full line represents a Gaussian fit plus background); and (H, H), nodal, orange. c,e, Modulation of the charge density1ρ(x, y),
with functional form given by a sum (c) and product (e) of cosines, and a wavevector magnitude Q∗=0.265 r.l.u. (black bars indicate the period and
direction of the spatial modulation, expressed in terms of the lattice parameter a=3.86 Å). The blue rectangles denote the undistorted unit cell. d,f, Fourier
transforms of c,e, respectively, with Gaussian broadening. The arrows indicate the directions of the data in a,b, which validate the scenario in c,d, and
not in e,f.

Q∗=0.265 (r.l.u.) are given by 1ρ(x ,y)=cos(Q∗x)+cos(Q∗y)
(Fig. 1c) and 1ρ(x ,y)=cos(Q∗x)×cos(Q∗y) (Fig. 1e). The first
case corresponds to reciprocal-space features along the (H , 0) and
(0,H) axes (Fig. 1d), whereas the second yields spatial frequencies
along the (H , H) and (H , −H) direction (Fig. 1f). Similar Q-space
patterns would be obtained in the case of alternating stripes. As
no CDW peaks are observed along (H , H), we conclude that the
the second scenario can be ruled out, thus establishing that charge
modulations exclusively run parallel to the Cu–O bond directions
(a and b axes).

The second andmain part of this study focuses on the k-structure
of the CDW order, which controls the local arrangement of excess
charges within each CuO4 plaquette. RXS is able to probe the
local charge density 1ρ(r) through the spatial modulation of
the core (Cu-2p) to valence (Cu-3d) transition energies 1E(r)
(refs 18,40). Most importantly, the local symmetry of the valence
orbitals (Cu-3d and O-2p) is imprinted onto the scattering
tensor, which ultimately determines the observed RXS signal (see
Supplementary Information for a more detailed derivation). To
evaluate the symmetry of the CDW order 1CDW, we selectively
probe the different transition channels (Cu-2px ,y ,z→3d) by rotating
the light polarization in the RXS measurements. This procedure
allows one to reconstruct the scattering tensor and disentangle
the contributions from the different symmetry components of
1CDW(k, Q)= 〈c†

k+Q/2 · ck-Q/2〉 (refs 28,41), namely: a site-centred
modulation (1CDW = 1s), corresponding to an extra charge
residing on the Cu-3d orbital (Fig. 2a); an extended s′-wave bond
order [1CDW=1s′(coskx+cosky)], where the spatially modulated
density is on the O-2p states, and the maxima along the x
and y directions coincide (Fig. 2b); and a d-wave bond order
[1CDW=1d(coskx−cosky)], where the chargemodulation changes
sign between x- and y-coordinated oxygen atoms, and the maxima
are shifted by a half wavelength (Fig. 2c).

In the experiments we use a special geometry, in which the
sample is rotated around the ordering vector Q∗ (Fig. 3a,b). This
method allows one to look at the samewavevector whilemodulating
(as a function of the azimuthal rotation angle α) the relative weight
of the Cu 2px ,y ,z→ 3d transitions, which is controlled by the light
polarization through dipole selection rules. Here the α dependence
of the charge-order intensity is the new information that allows
one to evaluate—through comparison with theoretical predictions
from scattering theory—what is the optimal mix of the s-, s′- and
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Figure 2 | Charge modulation symmetry components. a–c, Real-space
schematics of the electronic density ρ= ρ̄+δρ in the case of site order
(charges on Cu) (a), or bond order (charges on O) with either extended
s-wave (b) or d-wave (c) local symmetry along a single
crystallographic direction.
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Figure 3 | Azimuthal angle-dependent RXS measurements: geometry and experimental data. a, Side view of the experimental geometry; control variables
are: the incoming and outgoing photon wavevectors kin and kout, which determine the exchanged momentum Q; the incoming (linear) polarization ε in
(=σ or π); and the azimuthal angle α, whose rotation axis ûα coincides with the direction of Q. The polarization of scattered X-rays (σ′ or π ′) is not
analysed. b, Top view, illustrating the need for a wedge-shaped sample holder to guarantee the condition ûα‖Q for the specific Q-vector of interest
(θw=57.5◦ and 62◦ for YBCO and Bi2201, respectively). The full (dashed) red line defines the geometry corresponding to α=0◦ (α= 180◦). Scattered
photons are collected using a multichannel-plate (MCP) detector. c, Azimuthal angle-dependent Q-scans of the CDW peak (after subtraction of
fluorescence background) at QCDW=(0,0.31, 1.5) in YBCO-Ortho III, plotted versus the CuO2-plane projection of the exchanged momentum Q‖.

d-wave symmetry terms that best reproduces the experimental
results via their contribution within the scattering tensor. The
azimuthal dependence of the RXS signal was studied in Bi2201-
UD15K, at Q∗∼ (0.265,0,2.8), and in two underdoped YBa2Cu3Oy
compounds: YBa2Cu3O6.51 (YBCO-Ortho II, with p ' 0.10) and
YBa2Cu3O6.75 (YBCO-Ortho III, with p'0.13), atQ∗∼(0,0.31,1.5).
A series of in-planemomentum (Q‖) scans of the charge-order peak
in YBCO-Ortho III, acquired at T =Tc= 75K with both σ- and
π-polarized incoming X-rays, is presented in Fig. 3c for the range
0◦<α<180◦, where α=0 corresponds to having the b axis in the
scattering plane (as determined by high-energy Bragg diffraction)
in the configuration of Fig. 4b (full red line).

The total scattered intensity IRXS is extracted by fitting the
RXS momentum scans with a Gaussian peak, and is in general
proportional to the amplitude of the charge modulation. As
described in equation (1) below, we can directly compare IRXS to the
theoretical scattering tensor Fpq (refs 42,43):

Iε→ε′(Q∗,α)∝
∣∣∣∑

pq
εp ·Fpq(Q∗,α) ·ε ′q

∣∣∣2 (1)

where ε and ε ′ represent the polarization vectors for incoming and
outgoing photons, respectively, whileQ∗ is the ordering wavevector.
The α dependence is induced by simply applying a rotation (about
the azimuthal axis and of magnitude equal to α) to the scattering
tensor Fpq. Based on symmetry arguments (see Supplementary
Information for additional details) the unrotated scattering tensor
Fpq can be written in terms of a linear combination of the s-, s′- and
d-wave components of the charge order, with respectivemagnitudes
δs, δs′ and δd [note that, as the scattering yield at the Cu-L3 edge is
more sensitive to charges on the Cu site (s-wave order) than on the
O site (s′- and d-wave order), we have that δd/δs′=1d/1s′ , whereas
in general δs/δd >1s/1d and δs/δs′ >1s/1s′ ; see Supplementary
Information for more details]. This way Fpq becomes:

Fpq(±Q∗)=

∣∣∣∣∣∣
δs+(δs′+δd)cosφ 0 0

0 δs+δs′−δd 0
0 0 γ δs

∣∣∣∣∣∣ (2)

where the phase φ=Q∗ · a/2 accounts for the mismatch between
the ordering period and the lattice parameter, while γ is the
ratio between the out-of-plane and the in-plane transition matrix
elements, which has been estimated from X-ray absorption data

on Bi2201 (a similar analysis in YBCO is hampered by the
proximity between the chain and plane transitions in the absorption
spectrum). Note that a similar version of equation (2), developed
here for the Cu-L edge, has been recently used in ref. 39 for RXS at
the O-K edge.

The total calculated scattering intensity, before self-absorption
correction, is then given by: Icalc(α)= Iε→σ′(α)+ Iε→π ′(α), where
ε=σ or π . We subsequently include self-absorption corrections on
the calculated profiles (see Supplementary Information). Figure 4
presents the experimental data for the two YBCO samples and
for Bi2201 in the form of the RXS intensity ratio between
vertical and horizontal polarization configurations IσRXS/IπRXS (grey
markers) to factor out possible extrinsic effects due to the sample
shape and orientation with respect to the scattering geometry.
Also shown are model calculations (Icalc, continuous lines) for all
possible combinations of two CDW symmetry components—that
is, s+d , s′+d and s+ s′—together with the pure d-wave model for
comparison (for a complete analysis of all possible combinations
of one- and two-symmetry terms see Supplementary Methods).
In particular, the peculiarity of those combinations including a
d-wave term is that the minimum in the calculated profile Iσcalc/Iπcalc
is displaced from α = 90◦, a consequence of the more strongly
asymmetric pattern of charges within each CuO4 plaquette (see
Fig. 2). In contrast, a combination of s and s′ components alone
remains symmetric with respect to α=90◦, and so do the pure-
symmetry profiles. As the experimental data are characterized by a
slight asymmetry (αmin' 100◦), the two-component combinations
involving a locally asymmetric (d-wave) term fit the YBCO data
more closely. For such combinations, the presence of a symmetric
term is also found to be necessary, as a pure d-wave fit clearly
overestimates the total amplitude of the experimental azimuthal
modulation (see dotted grey line in Fig. 4).

On the other hand, the lack of a clear asymmetry in Bi2201
prevents our analysis from providing a conclusive answer on the
symmetry of charge order in this material. However, such an
asymmetry might be overshadowed by the larger scatter in the data
due to weaker CDW features in RXS data on Bi-cuprates than in
YBCO. Indeed, we note that this has been assessed—for (bilayer)
Bi-based cuprates—using alternative approaches38.

The qualitative argument based on the data asymmetry is
supported by a more quantitative assessment of the likelihood
of each model, which was estimated by evaluating the reduced
chi-square (χ 2

red) for all the experimental points and theoretical
configurations shown in Fig. 4 (see Supplementary Information for
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Figure 4 | Experimental and calculated CDW peak intensity versus azimuthal angle. a–c, Normalized RXS intensity ratio IσRXS/IπRXS for Y651 (a), Y675
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a formal definition of χ 2
red). The values of χ 2

red are subsequently
used within the chi-squared cumulative distribution function to
extract the probability P for the different models considered here,
where P denotes the probability that the model under consideration
yields a better agreement than a data set randomly generated
from a normal distribution (with mean-square deviations equal to
the experimental uncertainties). These probability levels (Table 1)
indicate that a symmetry decomposition including a dominant
d-wave bond-order component is more likely to describe the
experimental data from YBCO than a combination of symmetric
s- and s′-wave components. Although the relative magnitude of the
d- versus s- or s′-wave character here is not strongly constrained,
we note the presence of a symmetric component of about 20% of
the total charge order (see Table 1 and Supplementary Methods
for a more detailed discussion on the analysis); this closely
follows theoretical predictions for 1CDW in the context of the t–J
model28,41,44, as well as recent STM results38. Finally, we also note the
close proximity between a mixed solution with prevailing d-wave
character and those with prevailing s- or s′-wave character; this is
illustrated in Supplementary Fig. 6, which however indicates that
even in the latter case the d-wave component would still be as large
as 20–30%.

Altogether, in YBCO we reveal the charge-ordered electronic
ground state to be best described by a bond order with the mod-
ulating charge mainly located on O-2p orbitals and characterized
by a prominent d-wave character, whereas in Bi2201 the absence
of charge-order features along the diagonal axes in momentum
space demonstrates that charge modulations propagate exclusively
along the a and b axes. Therefore, our study reaffirms the pivotal

Table 1 | Statistical comparison of CDWmodels.

Sample Order s+s′ s+d s′+d

Ratio s′/s s/d s′/d
Y651 0.01 0.21 0.27
Y675 −0.01 0.22 0.27
Probability level P 5.6 83.8 85.5

Best-fit component ratios s′/s, s/d and s′/d for binary combinations of the fundamental CDW
symmetry terms s+s′ , s+d and s′+d, respectively. Probability levels P for the hypothesis that
each specific CDW model fits the experimental data better than a random sample. The values
suggest that those combinations featuring a prominent d-wave bond-order component
manifest a great likelihood (P>90%) of reproducing the experimental data.

role played by the O-2p ligand states in hole-doped cuprates45,46. In
light of STM works pointing to bond order in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2CaCu2O8+δ (refs 47,48), and more recently revealing a
dominant d-wave symmetry38, we propose that in the Bi-, Y- and
Cl-based cuprates, which all exhibit a very similar charge-order phe-
nomenology, the microscopic defining symmetry contains a promi-
nent d-wave bond-order component. In the La-based cuprates,
which already exhibit a doping dependence for the charge-ordering
vectors opposite to that of Bi2201 and YBCO (ref. 19), a recent
detailed study has revealed a predominant s′-wave bond-order39,
suggesting a different manifestation of the charge-order symmetry
in these systems. In such a context, we anticipate that future work
will be needed to provide further experimental constraints to the
ratio of different symmetry terms, to understand the sensitivity of
different probes to the symmetry of the charge order, and possibly
also how the latter is modulated by the out-of-plane component of
the wavevector.

The commonality between the symmetry of the superconducting
(SC) and CDW orders might suggest that the same attractive
interaction responsible for particle–particle (Cooper) pairing might
also be active in the particle–hole channel. This aspect—which
has been recently proposed at the theoretical level and was
suggested to originate from the exchange part (J ) of the interaction
Hamiltonian28,29,41,44—is here corroborated by our experiments. This
has deep implications in the context of the competing instabilities
of the electronic system and for an ultimate understanding of the
pairing mechanism.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Sample characterization. This study focuses on two underdoped YBa2Cu3O6+y

single crystals (y=0.51, p'0.10, Tc=57K, YBCO-Ortho II; y=0.75, p'0.13,
Tc=75K, YBCO-Ortho III) and one underdoped crystal of Bi2Sr1.2La0.8CuO6+δ

(p∼0.11, Tc=15K, Bi2201-UD15K). The superconducting critical temperature Tc

was determined from magnetic susceptibility measurements. The Tc-to-doping
correspondence is taken from ref. 49 (YBCO) and ref. 50 (Bi2201).

Soft X-ray scattering. The scattering measurements were performed at beamline
REIXS of the Canadian Light Source, on a 4-circle diffractometer in a 10−10 mbar
ultrahigh-vacuum chamber, with a photon flux around 5×1012 photons s−1 and
1E/E∼2×10−4 energy resolution. In addition, fully polarized incoming light is
used, with two available configurations: σ (polarization vector perpendicular to the
scattering plane) or π (polarization vector in the scattering plane). Owing to poor
performance of polarization analysers in the soft X-ray regime, the polarization of
the scattered light was not resolved in any of the measurements. To maximize the

charge order signal, all measurements were taken at the peak energy of the Cu-L3

edge (hν=931.5 eV) and at the superconducting transition temperature Tc. The
azimuthal angle α is defined as the angle between the RXS scan direction in the
(Qx ,Qy) plane of momentum space and the crystallographic b axis (for more details
on the azimuthal sample geometry see Supplementary Fig. 1 and the corresponding
discussion in the Supplementary Information). Note that, at all azimuthal angles,
the sample tilt angle has been slightly readjusted to ensure that the RXS scans slice
across the maximum of the CDW peak.
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Azimuthal sample geometry.
Our study relies on the capability of rotating the sample crystallographic axes with respect to a
given ordering wavevector Q, and subsequently slicing across the ordering peak in momentum
space along different directions in the (Qx, Qy) plane.

In order to implement this experimental scheme, we need to establish a geometry for the
sample holder which allows to rotate the sample around an axis coinciding with the transferred
momentum (which, in our case, also coincides with the ordering wavevector). However, if we
mount the sample on a conventional (flat) sampleholder (SH), i.e. with the crystallographic a-b-
plane coincident with the basal plane of the SH, the transferred momentum will be parallel to the
out-of-plane wavevector Qz, with zero projection to the (Qx, Qy) plane. Therefore, in order to
reach the charge order reflection at Qy∼0.31 reciprocal lattice units we use a wedge-shaped SH
(see Fig. 3b in the main text), which allows offsetting the sample crystallographic b-axis to an
amount functional to reach the desired position in the (Qx, Qy) plane. Such configuration, with
the b-axis rotated but still in the scattering plane, corresponds to the azimuthal angle α=0◦ in
our definition. This situation is illustrated in Fig. S1a1, which clarifies how the offset in the sam-
ple orientation induces a nonzero planar projection (Q∥) of the wavevector Q. The top and side
views of this configurations are shown in Fig. S1a2, while the schematic in Fig. S1a3 shows the
location of the wavevector Q∥ in the (Qx, Qy) plane, as well as the direction of the momentum
scan (see green box) when the sample is rotated in the scattering plane. This scheme elucidates
how the α=0◦ azimuthal geometry corresponds to performing the momentum scan across the
ordering peak at Qb ∼ (0, 0.31, L) (in the case of YBCO) along a direction parallel to the Qy

axis, where L is the out-of-plane component of the ordering wavevector (for this study, we used
L ≃ 1.5). By changing the azimuthal angle, the sample revolves around the axis parallel to the
transferred momentum Q, and the corresponding configurations for α=90◦, 180◦, and 270◦ are
shown in Figs. S1b1-b3, Figs. S1c1-c3, and Figs. S1d1-d3, respectively. In particular, from the
diagrams in Figs. S1a3, b3, c3, and d3, one can note how the projection of the central value in
the momentum scan always remains the same (dark red arrows), a consequence of the fact that
the azimuthal rotation leaves the ordering wavevector invariant since the latter coincides with
the azimuthal axis of rotation. However, the direction of the momentum scan is now rotated
with respect to the Qx and Qy axes, thus realizing the requirement necessary to perform this
study.

Polarization-dependent X-ray absorption.
The photon energy (ω) and site (n) dependent form factor f (n)

pq (ω) encodes all the information
that can be experimentally retrieved using X-ray absorption (XAS) and scattering (RXS), and
is mathematically defined as follows:

f (n)
pq (ω) =

e2

h̄m2c2
|A|2

∑
i,f

⟨ψ(n)
i |pq|ψ(n)

f ⟩ · ⟨ψ(n)
f |pp|ψ(n)

i ⟩
ω − (ω
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f − ω

(n)
i ) + iΓif

(S1)

where e and m are the fundamental electronic charge and mass, p= {pp}p=x,y,z is the electron
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Figure S1: Schematics of sample geometry implementing the azimuthal rotation.
a1,b1,c1,d1, Projected views of the orientation of the sample crystallographic frame with re-
spect to the scattering plane and the transferred momentum Q for the case of azimuthal angles
α=0◦, 90◦, 180◦, and 270◦, respectively. a2,b2,c2,d2, Top and side views of the configurations
in a1,b1,c1,d1. a3,b3,c3,d3, Projections of the transferred momenta and scan directions in the
Qx, Qy scattering plane, for the corresponding azimuthal angle values.

momentum operator, and A is the electromagnetic vector potential. Here ψ
(n)
i and ψ

(n)
f repre-

sent the initial and final single-particle electronic states at site Rn (with energies ω(n)
i and ω

(n)
f ,

respectively) involved in the light-induced transition i → f . Γif is the lifetime of the interme-
diate state with an electron in ψ

(n)
i and a hole in ψ

(n)
f . Henceforth we will use the unit vectors

ϵ and ϵ′ to refer to the polarization state (direction of the vector potential A) of incoming and
outgoing photons.
The observables associated to XAS and RXS techniques are directly related to f
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pq (ω) [1]:
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where we have introduced the scattering tensor Fpq, which is not a local quantity (does not de-
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how the α=0◦ azimuthal geometry corresponds to performing the momentum scan across the
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transferred momentum Q, and the corresponding configurations for α=90◦, 180◦, and 270◦ are
shown in Figs. S1b1-b3, Figs. S1c1-c3, and Figs. S1d1-d3, respectively. In particular, from the
diagrams in Figs. S1a3, b3, c3, and d3, one can note how the projection of the central value in
the momentum scan always remains the same (dark red arrows), a consequence of the fact that
the azimuthal rotation leaves the ordering wavevector invariant since the latter coincides with
the azimuthal axis of rotation. However, the direction of the momentum scan is now rotated
with respect to the Qx and Qy axes, thus realizing the requirement necessary to perform this
study.

Polarization-dependent X-ray absorption.
The photon energy (ω) and site (n) dependent form factor f (n)

pq (ω) encodes all the information
that can be experimentally retrieved using X-ray absorption (XAS) and scattering (RXS), and
is mathematically defined as follows:
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pend on the lattice position Rn) and is more directly related to the physical observable in RXS
experiments (IRXS). We note that an equivalent approach was shown in [2], but there Fpq is
denoted T . Moreover, from the above equations it follows that XAS only depends on the in-
coming light polarization ϵp, whereas the RXS signal depends on the outgoing light polarization
ϵ′q, as well.

first of all, the local form factor inherits the symmetry properties of the material-specific
space group. For a non-magnetic orthorhombic system, and assuming the Cartesian axes x,y, z
to coincide with the crystallographic axes a,b, c, one has:

fpq =

������
fxx 0 0
0 fyy 0
0 0 fzz

������
, (S4)

with fxx ̸=fyy ̸=fzz, in general.
YBCO and Bi2201 are both orthorhombic materials, but the origin of their orthorhombicity is
different. In Bi2201, the orthorhombic distortion consists of a tiny rhomboedral deformation of
the structural unit cell along the b∗ axis, oriented at 45 degrees from the Cu-O bond direction
[3,4,5]. Although the CuO2 planes cease to have square symmetry, the effective anisotropy
between the two planar axes a and b is so tiny that one can approximate fxx≃fyy ̸=fzz. On the
other hand, in YBCO the orthorhombicity originates from the presence of the chain layer, where
the partially-oxygenated Cu-O chains run along the b axis, thus making a and b inequivalent
even though the CuO2 planes formally retain square symmetry on their own. In principle,
near the Cu absorption edges, the form factor can decomposed as fCu

pq = fplane
pq + f chain

pq , with
fplane
xx = fplane

yy and f chain
xx ̸= f chain

yy . Unfortunately, the plane- and chain-related features overlap
at the Cu-L2,3 edge in YBCO, and therefore cannot be fully disentangled [6]. For these reasons,
we have elected to study the polarization-dependence in the XAS on Bi2201, whose doping lies
very close to the YBCO samples, in order to extract a reliable estimate for the diagonal elements
in the scattering tensor. The latter constitute a crucial experimental input for the model later
employed to calculate the azimuthal angle dependent RXS cross-section.

The photon energy dependence of f (n)
pq (ω) near the Cu-L2,3 absorption can be modeled by a

simple Lorentzian lineshape, since no multiplet structure is present. In general, the parameters
of this Lorentzian function (amplitude A; position ∆E; linewidth Γ) are site-dependent, so that
we can write, in the most general case:

f (n)
pp (ω) ∼ A(n)

(
ω −∆E(n)

p + iΓ(n)
)−1

(S5)

Γ is inversely proportional to the lifetime of the 3d − 2p electron-hole excitation, therefore it
is hardly affected by small spatial variations of the electronic density, and we can set Γ(n)=Γ.
On the other hand, the amplitude A and peak position ∆E, depending on the local density of
unoccupied states and on the energy of initial/final state respectively, might vary as a function of
lattice position as a consequence of the modulated charge density. However, in the cuprates, it
has been shown that spatial variations of the transition amplitude A are not the main mechanism

4

behind the photon energy-dependent RXS response [7,8], hence we also assume A(n) → A. The
site-dependent transition energies depend on the charge density, and will therefore also reflect
the symmetry of the charge-ordered state. They can be readily calculated from the charge-
density-wave (CDW) order ∆CDW, which is discussed in the next section. For what concerns
the polarization dependence at the Cu-L3 edge, the cross section for different incoming light
polarization varies according to the orbital character of the initial and final states. The three
possible configurations ϵ∥x,y, z only allow (in the dipole approximation) excitation of a core
electron from a Cu-2px, 2py or 2pz orbital, respectively. For a hole-doped CuO2 plane, two
final states can be reached in the excitation process: (i) a Cu-2p53d10 state, with filled Cu-3d
and O-2p shells; or (ii) a Cu-2p53d10L configuration, where a ligand hole is present. Both final
states have a nonzero Cu-3dx2−y2 and 3d3z2−r2 spectral weight, with n (3dx2−y2) > n (3d3z2−r2)
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pend on the lattice position Rn) and is more directly related to the physical observable in RXS
experiments (IRXS). We note that an equivalent approach was shown in [2], but there Fpq is
denoted T . Moreover, from the above equations it follows that XAS only depends on the in-
coming light polarization ϵp, whereas the RXS signal depends on the outgoing light polarization
ϵ′q, as well.

first of all, the local form factor inherits the symmetry properties of the material-specific
space group. For a non-magnetic orthorhombic system, and assuming the Cartesian axes x,y, z
to coincide with the crystallographic axes a,b, c, one has:

fpq =

������
fxx 0 0
0 fyy 0
0 0 fzz

������
, (S4)

with fxx ̸=fyy ̸=fzz, in general.
YBCO and Bi2201 are both orthorhombic materials, but the origin of their orthorhombicity is
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between the two planar axes a and b is so tiny that one can approximate fxx≃fyy ̸=fzz. On the
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the partially-oxygenated Cu-O chains run along the b axis, thus making a and b inequivalent
even though the CuO2 planes formally retain square symmetry on their own. In principle,
near the Cu absorption edges, the form factor can decomposed as fCu

pq = fplane
pq + f chain

pq , with
fplane
xx = fplane

yy and f chain
xx ̸= f chain

yy . Unfortunately, the plane- and chain-related features overlap
at the Cu-L2,3 edge in YBCO, and therefore cannot be fully disentangled [6]. For these reasons,
we have elected to study the polarization-dependence in the XAS on Bi2201, whose doping lies
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simple Lorentzian lineshape, since no multiplet structure is present. In general, the parameters
of this Lorentzian function (amplitude A; position ∆E; linewidth Γ) are site-dependent, so that
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f (n)
pp (ω) ∼ A(n)

(
ω −∆E(n)

p + iΓ(n)
)−1

(S5)

Γ is inversely proportional to the lifetime of the 3d − 2p electron-hole excitation, therefore it
is hardly affected by small spatial variations of the electronic density, and we can set Γ(n)=Γ.
On the other hand, the amplitude A and peak position ∆E, depending on the local density of
unoccupied states and on the energy of initial/final state respectively, might vary as a function of
lattice position as a consequence of the modulated charge density. However, in the cuprates, it
has been shown that spatial variations of the transition amplitude A are not the main mechanism

4

behind the photon energy-dependent RXS response [7,8], hence we also assume A(n) → A. The
site-dependent transition energies depend on the charge density, and will therefore also reflect
the symmetry of the charge-ordered state. They can be readily calculated from the charge-
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the polarization dependence at the Cu-L3 edge, the cross section for different incoming light
polarization varies according to the orbital character of the initial and final states. The three
possible configurations ϵ∥x,y, z only allow (in the dipole approximation) excitation of a core
electron from a Cu-2px, 2py or 2pz orbital, respectively. For a hole-doped CuO2 plane, two
final states can be reached in the excitation process: (i) a Cu-2p53d10 state, with filled Cu-3d
and O-2p shells; or (ii) a Cu-2p53d10L configuration, where a ligand hole is present. Both final
states have a nonzero Cu-3dx2−y2 and 3d3z2−r2 spectral weight, with n (3dx2−y2) > n (3d3z2−r2)
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5

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4295


6	 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4295

in general. Our practical goal is to extract the ratio fzz/fxx at a photon energy ω = 931.5 eV,
where all RXS measurements were performed. This is experimentally performed by measuring
the XAS signal in the two geometries ϵ∥x and ϵ∥z, which can be done by rotating the sample
about the axis perpendicular to the scattering plane (see insets of Fig. S2).

The experimental results at the Cu-L3 absorption edge on Bi2201 are shown in Fig. S2a,b
for the case ϵ ∥ x and ϵ ∥ z, respectively. The 3d10 and 3d10L contributions can be sepa-
rated and are best fitted using a Lorentzian and Gaussian peak, respectively, convoluted with
a Gaussian resolution with 100 meV spectral width. The energy positions and linewidths of
the respective peaks are assumed to be independent of polarization, whereas the ratio between
the transition strengths at the Cu-2p63d9 to Cu-2p53d10 features (blue peaks) provides an esti-
mate of fzz/fxx ≃ 0.15. In the case of YBCO, a rough estimate can be done by looking at the
undoped compound YBa2Cu3O6 (where chains contribute no 3d10 final states), which yields
a lower value of fzz/fxx ∼ 0.1 [6]. Therefore we find a realistic experimental range to be
0.1 < fzz/fxx < 0.15.

From charge order symmetry to RXS model. Intuitively, the on-site energies of the Cu-
2p and 3d orbitals are affected by the presence of extra charges located on the neighboring
O-2p states. In Refs. 7 and 8, RXS measurements of LNSCO and YBCO illustrated that
the RXS transition energies were also spatially modulated in the presence of charge order in
the CuO2 planes. Here we are interested in deriving a model incorporating the effect of a
modulated charge distribution with different symmetry on the scattering tensor and, ultimately,
on the measured RXS intensities. In the following, we lay out the general framework linking
the energy shifts to the local charge modulations. However, we point out that, later on as we
develop our RXS model, we will not rely on the detailed values of the energy shifts, but rather
make use of the symmetry relation between the local form factor and the charge distribution
under different symmetry configurations (s-, s′-, and d-wave).

In the absence of charge order, the valence charge is homogeneously distributed, so that
each Oxygen site hosts an exact charge (in the 2p shell) of q=6− p/2, where p is the nominal
hole doping per Cu site. In the charge-ordered state, the electronic density forms a modulated
pattern, ∆ρ (r), with a maximum amplitude of ∆ρmax=∆Q/VUC (VUC is the unit cell volume).
The spatially modulated charge produces a net crystal field (CF) acting on the Cu orbitals at site
R through the Coulomb interaction [9]:

∆CF
i (R) =

e

εeff

∫∫
dr dr′

∆ρ (r)
��ψCu

i (r′ −R)
��2

|r− (r′ −R)|
, (S6)

where εeff is an effective dielectric constant that accounts for the screening of the bare Coulomb
potential, and ψCu

i is the wavefunction of the i-th local Cu orbital, i= {2px, 2py, 2pz, 3d}. The
density modulations can be decomposed into a site- (charges on Cu sites) and a bond- (charges
on Oxygen sites) centered contribution:

∆ρsite (r−Ri)=
∆Q

2VUC

∆CDW(Ri,Ri)
���ψ3dx2−y2

(r−Ri)
���
2

, (S7)

6

∆ρbond (r−Ri)=
∆Q

2VUC

∑
⟨j⟩

∆CDW(Ri,Rj)

����ψ2pj

(
r−Ri +Rj

2

)����
2

, (S8)

where in the second line the summation is over nearest-neighbor sites ⟨j⟩, and ψ2pj represents
an O-2px or 2py orbital depending on whether Ri +Rj points along x or y (we only consider
bonding O-2p orbitals). Eqs. S7 and S8 formalize the link between the density modulations and
∆CDW(Ri,Rj), namely the CDW order defined in real-space, which is related to its Fourier

counterpart ∆CDW(k,Q)=
⟨
c†k+Q/2 · ck−Q/2

⟩
by [10]:

∆CDW(Ri,Rj) ∝
∑
Q

∑
k

∆CDW(k,Q)eik· (Ri−Rj)eiQ· (Ri+Rj)/2. (S9)

At this point, ∆CDW(k,Q) can be expanded as follows [10]:

∆CDW(k,±QCDW) = [∆s +∆s′(cos kx + cos ky) + ∆d(cos kx − cos ky)] (S10)

where ∆s is the representation for site-centered CDW (with s-wave symmetry), while ∆s′ and
∆d are associated with an extended s- and a d-wave bond order, respectively. The three terms
in Eq. S10 are treated independently in subsequent calculations.

Using Eqs. S7, S8, and S9, we can express the charge modulations (at site n) for the Cu-3d
and O-2p orbitals associated to each symmetry term in Eq. S10 as follows:

s-wave
{
∆ρsite (Cu) ∝ cos (QCDW ·Rn)

s’-wave

{
∆ρbond (Ox±) ∝ cos (QCDW · (Rn ± a/2 x̂))

∆ρbond (Oy±) ∝ cos (QCDW ·Rn)

d-wave

{
∆ρbond (Ox±) ∝ cos (QCDW · (Rn ± a/2 x̂))

∆ρbond (Oy±) ∝ cos (QCDW ·Rn + π) ,
(S11)

where Ox± and Oy± represent the O-2p orbitals located at Rn ± a/2 x̂ and Rn ± a/2 ŷ, respec-
tively.

The RXS signal arises because the form factor is spatially modulated about an average value,
fpq=

[
f̄pq +∆f pq

]
δnpq. The scattering tensor can then be explicitly calculated using:

Fpq (Q) =
1

N

∑
n

������
f̄xx +∆fn

xx 0 0
0 f̄yy +∆fn

yy 0
0 0 f̄zz +∆fn

zz

������
eiQ·Rn

=
1

N

∑
n

������
f̄xx 0 0
0 f̄yy 0
0 0 f̄zz

������
eiQ·Rn +

������
∆fn

xx 0 0
0 ∆fn

yy 0
0 0 ∆fn

zz

������
eiQ·Rn

=
1

N

∑
n

������
∆fn

xx 0 0
0 ∆fn

yy 0
0 0 ∆fn

zz

������
eiQ·Rn (S12)

7

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4295


NATURE MATERIALS | www.nature.com/naturematerials	 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT4295

in general. Our practical goal is to extract the ratio fzz/fxx at a photon energy ω = 931.5 eV,
where all RXS measurements were performed. This is experimentally performed by measuring
the XAS signal in the two geometries ϵ∥x and ϵ∥z, which can be done by rotating the sample
about the axis perpendicular to the scattering plane (see insets of Fig. S2).

The experimental results at the Cu-L3 absorption edge on Bi2201 are shown in Fig. S2a,b
for the case ϵ ∥ x and ϵ ∥ z, respectively. The 3d10 and 3d10L contributions can be sepa-
rated and are best fitted using a Lorentzian and Gaussian peak, respectively, convoluted with
a Gaussian resolution with 100 meV spectral width. The energy positions and linewidths of
the respective peaks are assumed to be independent of polarization, whereas the ratio between
the transition strengths at the Cu-2p63d9 to Cu-2p53d10 features (blue peaks) provides an esti-
mate of fzz/fxx ≃ 0.15. In the case of YBCO, a rough estimate can be done by looking at the
undoped compound YBa2Cu3O6 (where chains contribute no 3d10 final states), which yields
a lower value of fzz/fxx ∼ 0.1 [6]. Therefore we find a realistic experimental range to be
0.1 < fzz/fxx < 0.15.

From charge order symmetry to RXS model. Intuitively, the on-site energies of the Cu-
2p and 3d orbitals are affected by the presence of extra charges located on the neighboring
O-2p states. In Refs. 7 and 8, RXS measurements of LNSCO and YBCO illustrated that
the RXS transition energies were also spatially modulated in the presence of charge order in
the CuO2 planes. Here we are interested in deriving a model incorporating the effect of a
modulated charge distribution with different symmetry on the scattering tensor and, ultimately,
on the measured RXS intensities. In the following, we lay out the general framework linking
the energy shifts to the local charge modulations. However, we point out that, later on as we
develop our RXS model, we will not rely on the detailed values of the energy shifts, but rather
make use of the symmetry relation between the local form factor and the charge distribution
under different symmetry configurations (s-, s′-, and d-wave).

In the absence of charge order, the valence charge is homogeneously distributed, so that
each Oxygen site hosts an exact charge (in the 2p shell) of q=6− p/2, where p is the nominal
hole doping per Cu site. In the charge-ordered state, the electronic density forms a modulated
pattern, ∆ρ (r), with a maximum amplitude of ∆ρmax=∆Q/VUC (VUC is the unit cell volume).
The spatially modulated charge produces a net crystal field (CF) acting on the Cu orbitals at site
R through the Coulomb interaction [9]:

∆CF
i (R) =

e

εeff

∫∫
dr dr′

∆ρ (r)
��ψCu

i (r′ −R)
��2

|r− (r′ −R)|
, (S6)

where εeff is an effective dielectric constant that accounts for the screening of the bare Coulomb
potential, and ψCu

i is the wavefunction of the i-th local Cu orbital, i= {2px, 2py, 2pz, 3d}. The
density modulations can be decomposed into a site- (charges on Cu sites) and a bond- (charges
on Oxygen sites) centered contribution:

∆ρsite (r−Ri)=
∆Q

2VUC

∆CDW(Ri,Ri)
���ψ3dx2−y2

(r−Ri)
���
2

, (S7)

6

∆ρbond (r−Ri)=
∆Q

2VUC

∑
⟨j⟩

∆CDW(Ri,Rj)

����ψ2pj

(
r−Ri +Rj

2

)����
2

, (S8)

where in the second line the summation is over nearest-neighbor sites ⟨j⟩, and ψ2pj represents
an O-2px or 2py orbital depending on whether Ri +Rj points along x or y (we only consider
bonding O-2p orbitals). Eqs. S7 and S8 formalize the link between the density modulations and
∆CDW(Ri,Rj), namely the CDW order defined in real-space, which is related to its Fourier

counterpart ∆CDW(k,Q)=
⟨
c†k+Q/2 · ck−Q/2

⟩
by [10]:

∆CDW(Ri,Rj) ∝
∑
Q

∑
k

∆CDW(k,Q)eik· (Ri−Rj)eiQ· (Ri+Rj)/2. (S9)

At this point, ∆CDW(k,Q) can be expanded as follows [10]:

∆CDW(k,±QCDW) = [∆s +∆s′(cos kx + cos ky) + ∆d(cos kx − cos ky)] (S10)

where ∆s is the representation for site-centered CDW (with s-wave symmetry), while ∆s′ and
∆d are associated with an extended s- and a d-wave bond order, respectively. The three terms
in Eq. S10 are treated independently in subsequent calculations.

Using Eqs. S7, S8, and S9, we can express the charge modulations (at site n) for the Cu-3d
and O-2p orbitals associated to each symmetry term in Eq. S10 as follows:

s-wave
{
∆ρsite (Cu) ∝ cos (QCDW ·Rn)

s’-wave

{
∆ρbond (Ox±) ∝ cos (QCDW · (Rn ± a/2 x̂))

∆ρbond (Oy±) ∝ cos (QCDW ·Rn)

d-wave

{
∆ρbond (Ox±) ∝ cos (QCDW · (Rn ± a/2 x̂))

∆ρbond (Oy±) ∝ cos (QCDW ·Rn + π) ,
(S11)

where Ox± and Oy± represent the O-2p orbitals located at Rn ± a/2 x̂ and Rn ± a/2 ŷ, respec-
tively.

The RXS signal arises because the form factor is spatially modulated about an average value,
fpq=

[
f̄pq +∆f pq

]
δnpq. The scattering tensor can then be explicitly calculated using:

Fpq (Q) =
1

N

∑
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������
f̄xx +∆fn

xx 0 0
0 f̄yy +∆fn

yy 0
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where the last line assumes that Q ̸= 0, a condition which causes the first term in the second
line to vanish. It is clear from Eq. S12 that spatial variations of fpq are an essential ingredient
to have a nonzero scattering tensor and, therefore, a nonzero RXS cross section. The variations
in the local form factor fpq considered in our model are a consequence of a spatial variation in
the energy shifts ∆E, which in turn are determined by the fluctuations in the local electronic
density (∆ρ), according to Eq.S6. For small amplitudes of ∆ρ (typically in cuprates the charge
inhomogeneity is of the order of ∆ρ < 0.1e [11-12]) and consequently of ∆E, we can Taylor-
expand ∆f with respect to ∆ρ and retain only the lowest (linear) order, which leads to:

s-wave
{
∆f (n)

xx = ∆f (n)
yy ∝ ∆ρ (Cu)

s’- and d-wave

{
∆f (n)

xx ∝ ∆ρ (Ox+) + ∆ρ (Ox−)

∆f (n)
yy ∝ ∆ρ (Oy+) + ∆ρ (Oy−)

(S13)

Where the expansions take into account the fact that the core-to-valence transitions under con-
siderations are more sensitive to local variations in the occupation of certain orbitals, e.g. in
presence of s’- or d-wave order the ∆f (n)

xx (∆f (n)
yy ) terms are primarily sensitive to variations

in the density of the x- (y-) coordinated O-2p orbitals, since they reflect transitions involving
initial states that are pointing in the x (y) direction, i.e. Cu-2px (Cu-2py).

Combining Eq. S11 and S13 leads to the following core expression for our RXS model:

s-wave

{
∆f (n)

xx = ∆f (n)
yy = δs cos (QCDW ·Rn)

∆f (n)
zz = γ × δs cos (QCDW ·Rn)

s’-wave




∆f (n)
xx = 1

2
× δs′ [cos (QCDW · (Rn + a/2 x̂)) + cos (QCDW · (Rn − a/2 x̂))]

= δs′ · cos (QCDW ·Rn) · cosϕ
∆f (n)

yy = δs′ cos (QCDW ·Rn)

∆f (n)
zz = 0

d-wave




∆f (n)
xx = 1

2
× δd [cos (QCDW · (Rn + a/2 x̂)) + cos (QCDW · (Rn − a/2 x̂))]

= δd · cos (QCDW ·Rn) · cosϕ
∆f (n)

yy = δd cos (QCDW ·Rn + π) = −δd cos (QCDW ·Rn)

∆f (n)
zz = 0,

(S14)

where we have introduced the phase ϕ = QCDW · a/2 x̂ and set γ = ∆f zz/∆fxx = f̄zz/f̄xx
to represent the anisotropy ratio in the form factor tensor. The magnitudes of the s-, s’-, and
d-wave components of the charge order are here indicated as δs, δs′ , and δd, respectively. Note
that out-of-plane transition at the Cu site are hardly affected by small variations in the O 2p
charge due to the small intersite orbital overlap, hence we have set ∆f (n)

zz = 0 for the s’- and
d-wave case. This parametrization and subsequent expression in terms of CDW symmetry is
similar to one developed in Ref. 2, which considered it in the case of scattering from the O
sublattice.

8

The above expressions can now be inserted into Eq. S12 to derive the scattering tensor:

s-wave




Fpq (QCDW) =

1

N

∑
nδs cos (QCDW ·Rn)

�������

1 0 0

0 1 0

0 0 γ

�������
eiQCDW·Rn = δsF

(s)
pq

s’-wave




Fpq (QCDW) =

1

N

∑
nδs′ cos (QCDW ·Rn)

�������

cosϕ 0 0

0 1 0

0 0 0

�������
eiQCDW·Rn = δs′F

(s′)
pq

d-wave




Fpq (QCDW) =

1

N

∑
nδd cos (QCDW ·Rn)

�������

cosϕ 0 0

0 −1 0

0 0 0

�������
eiQCDW·Rn = δdF

(d)
pq(S15)

Using these equations we can write, in a more compact form, the scattering tensor associated
to a linear combination of δs, δs′ , and δd:

Fpq (±QCDW) =

������
δs + (δs′ + δd) cosϕ 0 0

0 δs + δs′ − δd 0
0 0 γδs

������
(S16)

This last expression – depending exclusively on the magnitudes of the s-, s’-, and d-wave sym-
metry terms, on the wavevector- (and therefore sample-) dependent phase ϕ=QCDW ·a/2x̂, and
on the parameter γ – has been ultimately used to model the azimuthal-dependent RXS signal as
explained in more detail in the next section. We note that the use of a model that is based on
the general symmetry of the charge distribution (rather than on the microscopic charge pattern),
such as the one which is condensed in Eq. S15 implies that our framework cannot in principle
be used to distinguish between a stripe-like and a checkerboard-like scenario.

RXS azimuthal angle dependence and validity of charge-ordering models. Calculations of
the scattering intensity as measured using RXS have been performed starting from Eq. S3, and
using the functional form for the scattering tensor as given in Eq. S16. For each azimuthal angle
α the scattering tensor F is transformed using the rotation matrix Rû(α) (û is the azimuthal
rotation axis, which is parallel to the wavevector Q), yielding F̃(α) = Rû(α) · F · R⊤

û (α).
Replacing this last expression in the formula for the RXS cross section (Eq. S3) leads to the
master expression used to generate the theoretical RXS azimuthal profiles:

IRXS(α) =
���
∑

pq
ϵp · F̃pq(α) · ϵ′q

���
2

, (S17)

Note that in our model the polarization vectors are assumed to be fixed (since they belong to
the laboratory frame of reference). The calculated profiles are subsequently corrected for self-
absorption using the formula [13]:

Icalc(α)=IRXS(α)×
[
µin + µout ×

cos (kin(α) · n̂(α))
cos (kout(α) · n̂(α))

]−1

, (S18)
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where the last line assumes that Q ̸= 0, a condition which causes the first term in the second
line to vanish. It is clear from Eq. S12 that spatial variations of fpq are an essential ingredient
to have a nonzero scattering tensor and, therefore, a nonzero RXS cross section. The variations
in the local form factor fpq considered in our model are a consequence of a spatial variation in
the energy shifts ∆E, which in turn are determined by the fluctuations in the local electronic
density (∆ρ), according to Eq.S6. For small amplitudes of ∆ρ (typically in cuprates the charge
inhomogeneity is of the order of ∆ρ < 0.1e [11-12]) and consequently of ∆E, we can Taylor-
expand ∆f with respect to ∆ρ and retain only the lowest (linear) order, which leads to:

s-wave
{
∆f (n)

xx = ∆f (n)
yy ∝ ∆ρ (Cu)

s’- and d-wave

{
∆f (n)

xx ∝ ∆ρ (Ox+) + ∆ρ (Ox−)

∆f (n)
yy ∝ ∆ρ (Oy+) + ∆ρ (Oy−)

(S13)

Where the expansions take into account the fact that the core-to-valence transitions under con-
siderations are more sensitive to local variations in the occupation of certain orbitals, e.g. in
presence of s’- or d-wave order the ∆f (n)

xx (∆f (n)
yy ) terms are primarily sensitive to variations

in the density of the x- (y-) coordinated O-2p orbitals, since they reflect transitions involving
initial states that are pointing in the x (y) direction, i.e. Cu-2px (Cu-2py).

Combining Eq. S11 and S13 leads to the following core expression for our RXS model:

s-wave

{
∆f (n)

xx = ∆f (n)
yy = δs cos (QCDW ·Rn)

∆f (n)
zz = γ × δs cos (QCDW ·Rn)

s’-wave




∆f (n)
xx = 1

2
× δs′ [cos (QCDW · (Rn + a/2 x̂)) + cos (QCDW · (Rn − a/2 x̂))]

= δs′ · cos (QCDW ·Rn) · cosϕ
∆f (n)

yy = δs′ cos (QCDW ·Rn)

∆f (n)
zz = 0

d-wave




∆f (n)
xx = 1

2
× δd [cos (QCDW · (Rn + a/2 x̂)) + cos (QCDW · (Rn − a/2 x̂))]

= δd · cos (QCDW ·Rn) · cosϕ
∆f (n)

yy = δd cos (QCDW ·Rn + π) = −δd cos (QCDW ·Rn)

∆f (n)
zz = 0,

(S14)

where we have introduced the phase ϕ = QCDW · a/2 x̂ and set γ = ∆f zz/∆fxx = f̄zz/f̄xx
to represent the anisotropy ratio in the form factor tensor. The magnitudes of the s-, s’-, and
d-wave components of the charge order are here indicated as δs, δs′ , and δd, respectively. Note
that out-of-plane transition at the Cu site are hardly affected by small variations in the O 2p
charge due to the small intersite orbital overlap, hence we have set ∆f (n)

zz = 0 for the s’- and
d-wave case. This parametrization and subsequent expression in terms of CDW symmetry is
similar to one developed in Ref. 2, which considered it in the case of scattering from the O
sublattice.

8

The above expressions can now be inserted into Eq. S12 to derive the scattering tensor:

s-wave




Fpq (QCDW) =

1

N

∑
nδs cos (QCDW ·Rn)

�������

1 0 0

0 1 0

0 0 γ

�������
eiQCDW·Rn = δsF

(s)
pq

s’-wave




Fpq (QCDW) =

1

N

∑
nδs′ cos (QCDW ·Rn)

�������

cosϕ 0 0

0 1 0

0 0 0

�������
eiQCDW·Rn = δs′F

(s′)
pq

d-wave




Fpq (QCDW) =

1

N

∑
nδd cos (QCDW ·Rn)

�������

cosϕ 0 0

0 −1 0

0 0 0

�������
eiQCDW·Rn = δdF

(d)
pq(S15)

Using these equations we can write, in a more compact form, the scattering tensor associated
to a linear combination of δs, δs′ , and δd:

Fpq (±QCDW) =

������
δs + (δs′ + δd) cosϕ 0 0

0 δs + δs′ − δd 0
0 0 γδs

������
(S16)

This last expression – depending exclusively on the magnitudes of the s-, s’-, and d-wave sym-
metry terms, on the wavevector- (and therefore sample-) dependent phase ϕ=QCDW ·a/2x̂, and
on the parameter γ – has been ultimately used to model the azimuthal-dependent RXS signal as
explained in more detail in the next section. We note that the use of a model that is based on
the general symmetry of the charge distribution (rather than on the microscopic charge pattern),
such as the one which is condensed in Eq. S15 implies that our framework cannot in principle
be used to distinguish between a stripe-like and a checkerboard-like scenario.

RXS azimuthal angle dependence and validity of charge-ordering models. Calculations of
the scattering intensity as measured using RXS have been performed starting from Eq. S3, and
using the functional form for the scattering tensor as given in Eq. S16. For each azimuthal angle
α the scattering tensor F is transformed using the rotation matrix Rû(α) (û is the azimuthal
rotation axis, which is parallel to the wavevector Q), yielding F̃(α) = Rû(α) · F · R⊤

û (α).
Replacing this last expression in the formula for the RXS cross section (Eq. S3) leads to the
master expression used to generate the theoretical RXS azimuthal profiles:

IRXS(α) =
���
∑

pq
ϵp · F̃pq(α) · ϵ′q

���
2

, (S17)

Note that in our model the polarization vectors are assumed to be fixed (since they belong to
the laboratory frame of reference). The calculated profiles are subsequently corrected for self-
absorption using the formula [13]:

Icalc(α)=IRXS(α)×
[
µin + µout ×

cos (kin(α) · n̂(α))
cos (kout(α) · n̂(α))

]−1

, (S18)
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Figure S3: Calculated azimuthal profiles for hybrid combinations of charge order symme-
try terms. Calculated profiles Icalc(α), using Eqs. S17 and S18, for mixed orders combinations:
a, s+ s′; b, s+ d; c, s′ + d. Thicker lines represent the single-symmetry terms s, s′, and d.

where kin,out represent the incident and scattered wavevectors, respectively, while n̂ is the sur-
face normal. The projections of the absorption tensor µij onto the incoming and outgoing x-ray
polarizations are denoted as µin= ϵiµijϵj and µout= ϵ′iµijϵ

′
j , respectively; the absorption tensor

in cuprates is diagonal with µxx=µyy and µzz ≃ 0.6 × µxx [6]. In order to compare the theory
and the measurements on equal grounds, there are two options: (i) to remove the self-absorption
contribution from the experimental data; or (ii) to incorporate the self-absorption correction into
the numerical calculations. Since the self-absorption correction depends on both the incoming
(ϵ) and outgoing (ϵ′) polarization vectors (through the absorption tensor µij), applying the cor-
rection directly onto the experimental data [case (i)] is not applicable, since the amount of light
scattered in each outgoing polarization channel was not resolved in the experiments. Therefore
we have applied the self-absorption correction onto the calculated profiles, where instead we
have full knowledge of the polarization vectors that enter Eq. S17.

The Icalc(α) profiles have been calculated for a linear combination of the symmetry terms
of the CDW order ∆CDW(k,Q), as encoded in Eq.S16. A value of γ=0.1 (γ=0.15) has been
used for YBCO (Bi2201). The expression in Eq.S16 has been treated as a model function with
fitting parameters δs, δs′ , and δd, and a chi-square minimization with respect to the measured
datasets has been performed. However, if all three symmetry components are assumed to be
nonzero and free to vary, the fitting procedures are found to inevitably converge to local minima
which depend on the choice of initial guesses. This is in part due to the fact that the scattering
tensor, despite having three nonzero entries (Fxx, Fyy, and Fzz), can be uniquely identified by an
irreducible set of only two parameters (e.g., Fzz/Fxx and Fyy/Fxx), since an overall rescaling
of the tensor will simply yield an amplitude rescaling. As a direct consequence of this fact, any
attempt to fit the experimental data with three free parameters leads to large cross-correlations

10

in the fitting coefficients and to a failure of the nonlinear regression procedure. Therefore, our
fitting analysis has been constrained to a combination of at most two symmetry terms, i.e. for
the six possible cases: (i) s; (ii) s′; (iii) d; (iv) s + s′; (v) s + d; and (vi) s′ + d. In any
case, as will become clear later, the data are already well-reproduced with a combination of
two symmetry terms, lifting the need for a 3-component fit. The azimuthal profiles arising
from combinations of this kind, for the case of vertical (σ) incoming polarization, are shown
in Fig. S3 (the single symmetry profiles are represented by thicker lines). Furthermore, since
the scattering tensor does not depend on the incoming light polarization ϵ (the charge order
symmetry is an intrinsic property of the system and therefore does not change with the probing
geometry), the datasets acquired using vertical and horizontal light polarizations (for the same
compound) have been fitted with the added constraint that all the fitting parameters be the same
for the two polarizations.

The experimental RXS azimuthal intensities for both vertical and horizontal incoming polar-
ization are reported in Fig. S4 and S5, with error bars obtained from a non-linear least-squares
regression analysis using a gradient-based method to determine the best fit parameters. Figure
Fig. S4 shows the fit results for single-symmetry terms, which would at first glance suggest that
the s-wave model is the one which best reproduces the experimental data. However, the use of
a combination of two symmetry terms, shown in Fig. S5, reveals how the addition of a second
component brings all of the best-fit theoretical profiles closer together. In particular, the mixed
terms containing a d-wave term are found to interpolate the data more closely than the purely
symmetric combination s + s′. This is explained by the observation that the symmetric s- and
s’-wave terms and any linear combination fail at reproducing the experimental data since they
always yield a symmetric distribution of intensities, centered about the azimuthal angle α=90◦,
in contrast to the experimental data from YBCO which showcase a ∼ 10◦ shift of min/max away
from 90◦.

This situation is analyzed in more detail by calculating the intensity ratio between α = 0◦

and α=90◦ [IRXS (α=0◦) /IRXS (α=90◦)] and the minimum angular position in the azimuthal
RXS intensity distribution αmin, which serve as useful metrics for the assessment of the sim-
ilarity between the calculated profiles and the experimental data. The corresponding traces,
evaluated for the symmetry combination s + d, s′ + d, and s + s′ (and assuming vertical light
polarization) as a function of the symmetry term mixing ratios are shown in Fig. S6: a1-a3 and
b1-b3, respectively. The experimental bands are represented by the shaded area. The best agree-
ment between theoretical and experimental RXS intensities can be estimated to occur when the
calculated traces in Fig. S6 cross the experimental bands, for both IRXS (α=0◦) /IRXS (α=90◦)
and αmin. These simultaneous crossing points are marked with green circles, and can be seen
to occur only in the s + d and s′ + d cases. The reason why such crossing is not present for a
s + s′ combination follows from the fact that the minimum RXS intensity is always found at
α= 90◦ (see Fig. 6b3). On the other hand, for combinations containing a d-wave component,
the theoretical curves are found to approach the experimental data when s/d = δs/δd ∼ 0.2
(s′/d= δs′/δd∼ 0.25), thus providing a qualitative picture for the results of the fitting analysis,
which returned very consistent values. While there are other values of s/d and s′/d that verify
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Figure S3: Calculated azimuthal profiles for hybrid combinations of charge order symme-
try terms. Calculated profiles Icalc(α), using Eqs. S17 and S18, for mixed orders combinations:
a, s+ s′; b, s+ d; c, s′ + d. Thicker lines represent the single-symmetry terms s, s′, and d.

where kin,out represent the incident and scattered wavevectors, respectively, while n̂ is the sur-
face normal. The projections of the absorption tensor µij onto the incoming and outgoing x-ray
polarizations are denoted as µin= ϵiµijϵj and µout= ϵ′iµijϵ

′
j , respectively; the absorption tensor

in cuprates is diagonal with µxx=µyy and µzz ≃ 0.6 × µxx [6]. In order to compare the theory
and the measurements on equal grounds, there are two options: (i) to remove the self-absorption
contribution from the experimental data; or (ii) to incorporate the self-absorption correction into
the numerical calculations. Since the self-absorption correction depends on both the incoming
(ϵ) and outgoing (ϵ′) polarization vectors (through the absorption tensor µij), applying the cor-
rection directly onto the experimental data [case (i)] is not applicable, since the amount of light
scattered in each outgoing polarization channel was not resolved in the experiments. Therefore
we have applied the self-absorption correction onto the calculated profiles, where instead we
have full knowledge of the polarization vectors that enter Eq. S17.

The Icalc(α) profiles have been calculated for a linear combination of the symmetry terms
of the CDW order ∆CDW(k,Q), as encoded in Eq.S16. A value of γ=0.1 (γ=0.15) has been
used for YBCO (Bi2201). The expression in Eq.S16 has been treated as a model function with
fitting parameters δs, δs′ , and δd, and a chi-square minimization with respect to the measured
datasets has been performed. However, if all three symmetry components are assumed to be
nonzero and free to vary, the fitting procedures are found to inevitably converge to local minima
which depend on the choice of initial guesses. This is in part due to the fact that the scattering
tensor, despite having three nonzero entries (Fxx, Fyy, and Fzz), can be uniquely identified by an
irreducible set of only two parameters (e.g., Fzz/Fxx and Fyy/Fxx), since an overall rescaling
of the tensor will simply yield an amplitude rescaling. As a direct consequence of this fact, any
attempt to fit the experimental data with three free parameters leads to large cross-correlations
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in the fitting coefficients and to a failure of the nonlinear regression procedure. Therefore, our
fitting analysis has been constrained to a combination of at most two symmetry terms, i.e. for
the six possible cases: (i) s; (ii) s′; (iii) d; (iv) s + s′; (v) s + d; and (vi) s′ + d. In any
case, as will become clear later, the data are already well-reproduced with a combination of
two symmetry terms, lifting the need for a 3-component fit. The azimuthal profiles arising
from combinations of this kind, for the case of vertical (σ) incoming polarization, are shown
in Fig. S3 (the single symmetry profiles are represented by thicker lines). Furthermore, since
the scattering tensor does not depend on the incoming light polarization ϵ (the charge order
symmetry is an intrinsic property of the system and therefore does not change with the probing
geometry), the datasets acquired using vertical and horizontal light polarizations (for the same
compound) have been fitted with the added constraint that all the fitting parameters be the same
for the two polarizations.

The experimental RXS azimuthal intensities for both vertical and horizontal incoming polar-
ization are reported in Fig. S4 and S5, with error bars obtained from a non-linear least-squares
regression analysis using a gradient-based method to determine the best fit parameters. Figure
Fig. S4 shows the fit results for single-symmetry terms, which would at first glance suggest that
the s-wave model is the one which best reproduces the experimental data. However, the use of
a combination of two symmetry terms, shown in Fig. S5, reveals how the addition of a second
component brings all of the best-fit theoretical profiles closer together. In particular, the mixed
terms containing a d-wave term are found to interpolate the data more closely than the purely
symmetric combination s + s′. This is explained by the observation that the symmetric s- and
s’-wave terms and any linear combination fail at reproducing the experimental data since they
always yield a symmetric distribution of intensities, centered about the azimuthal angle α=90◦,
in contrast to the experimental data from YBCO which showcase a ∼ 10◦ shift of min/max away
from 90◦.

This situation is analyzed in more detail by calculating the intensity ratio between α = 0◦

and α=90◦ [IRXS (α=0◦) /IRXS (α=90◦)] and the minimum angular position in the azimuthal
RXS intensity distribution αmin, which serve as useful metrics for the assessment of the sim-
ilarity between the calculated profiles and the experimental data. The corresponding traces,
evaluated for the symmetry combination s + d, s′ + d, and s + s′ (and assuming vertical light
polarization) as a function of the symmetry term mixing ratios are shown in Fig. S6: a1-a3 and
b1-b3, respectively. The experimental bands are represented by the shaded area. The best agree-
ment between theoretical and experimental RXS intensities can be estimated to occur when the
calculated traces in Fig. S6 cross the experimental bands, for both IRXS (α=0◦) /IRXS (α=90◦)
and αmin. These simultaneous crossing points are marked with green circles, and can be seen
to occur only in the s + d and s′ + d cases. The reason why such crossing is not present for a
s + s′ combination follows from the fact that the minimum RXS intensity is always found at
α= 90◦ (see Fig. 6b3). On the other hand, for combinations containing a d-wave component,
the theoretical curves are found to approach the experimental data when s/d = δs/δd ∼ 0.2
(s′/d= δs′/δd∼ 0.25), thus providing a qualitative picture for the results of the fitting analysis,
which returned very consistent values. While there are other values of s/d and s′/d that verify
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Figure S4: Experimental and calculated (single-symmetry) CDW peak intensity vs. az-
imuthal angle. Normalized RXS intensities (uncorrected for self-absorption) are plotted using
red (green) markers for scans acquired using vertical (horizontal) incoming polarization. Theo-
retical profiles (corrected for self-absorption) for three possible combinations are obtained from
a least-squares fitting method and overlaid on the data – d (full thick), s′ (full thin), and s
(dashed thin). Datasets are presented for: a1,a2, Bi2201; b1,b2, Y675; c1,c2, Y651.

one or the other condition (yielding a crossing for IRXS (α=0◦) /IRXS (α=90◦) or αmin), it is
only when s/d∼0.2 (s′/d∼0.25) that these two conditions are verified at the same time. Ulti-
mately, and regardless of the specific model parameters assumed for the scattering tensor, it is
the very structure of the latter, with a sign change in the d-wave component in Eq. S16, that un-
derlies the need for a d-wave term to reproduce the slight skewness in the azimuthal modulation
of the RXS intensities.

In addition, we note that, since the proportionality between the scattering yield and the
charge modulation amplitude (the latter being proportional to ∆CDW) is not exactly the same
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Figure S5: Experimental and calculated (mixed-symmetry) CDW peak intensity vs. az-
imuthal angle. Normalized RXS intensities (uncorrected for self-absorption) are plotted using
red (green) markers for scans acquired using vertical (horizontal) incoming polarization. Theo-
retical profiles (corrected for self-absorption) for three possible combinations are obtained from
a least-squares fitting method and overlaid to the data: s + d and s′ + d (full, a single trace
is used since the resulting profiles are nearly overlapping), and s + s′ (dashed). Datasets are
presented for: a1,a2, Bi2201; b1,b2, Y675; c1,c2, Y651.

for charges sitting on the Cu site (s-wave order) and O site (s’- and d-wave order), we can
write that δd/δs′ =∆d/∆s′ , while in general δs/δd >∆s/∆d and δs/δs′ >∆s/∆s′ (the last two
inequalities following from the fact that the energy shifts are larger in presence of extra charges
residing on the site rather than in the bond).

As a figure of merit to evaluate the validity of the models with respect to the experimental
results, we have used the reduced chi-square χ2

red [14] defined as follows:

χ2
red =

1

N−3

N∑
p=1

(
Ip − Icalc(αp)

σp

)2

, (S19)

where Ip and αp are the experimental data (RXS intensities and azimuthal angles, respectively,
from the data shown in Fig. 4 in the main text); σp are the uncertainties in the determination
of the scattering intensities Ip, derived from Gaussian fits to the RXS scans; and Icalc are the
theoretical profiles for the various terms in the charge order, calculated from Eq. S17. Since
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Figure S4: Experimental and calculated (single-symmetry) CDW peak intensity vs. az-
imuthal angle. Normalized RXS intensities (uncorrected for self-absorption) are plotted using
red (green) markers for scans acquired using vertical (horizontal) incoming polarization. Theo-
retical profiles (corrected for self-absorption) for three possible combinations are obtained from
a least-squares fitting method and overlaid on the data – d (full thick), s′ (full thin), and s
(dashed thin). Datasets are presented for: a1,a2, Bi2201; b1,b2, Y675; c1,c2, Y651.

one or the other condition (yielding a crossing for IRXS (α=0◦) /IRXS (α=90◦) or αmin), it is
only when s/d∼0.2 (s′/d∼0.25) that these two conditions are verified at the same time. Ulti-
mately, and regardless of the specific model parameters assumed for the scattering tensor, it is
the very structure of the latter, with a sign change in the d-wave component in Eq. S16, that un-
derlies the need for a d-wave term to reproduce the slight skewness in the azimuthal modulation
of the RXS intensities.

In addition, we note that, since the proportionality between the scattering yield and the
charge modulation amplitude (the latter being proportional to ∆CDW) is not exactly the same
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Figure S5: Experimental and calculated (mixed-symmetry) CDW peak intensity vs. az-
imuthal angle. Normalized RXS intensities (uncorrected for self-absorption) are plotted using
red (green) markers for scans acquired using vertical (horizontal) incoming polarization. Theo-
retical profiles (corrected for self-absorption) for three possible combinations are obtained from
a least-squares fitting method and overlaid to the data: s + d and s′ + d (full, a single trace
is used since the resulting profiles are nearly overlapping), and s + s′ (dashed). Datasets are
presented for: a1,a2, Bi2201; b1,b2, Y675; c1,c2, Y651.

for charges sitting on the Cu site (s-wave order) and O site (s’- and d-wave order), we can
write that δd/δs′ =∆d/∆s′ , while in general δs/δd >∆s/∆d and δs/δs′ >∆s/∆s′ (the last two
inequalities following from the fact that the energy shifts are larger in presence of extra charges
residing on the site rather than in the bond).

As a figure of merit to evaluate the validity of the models with respect to the experimental
results, we have used the reduced chi-square χ2

red [14] defined as follows:

χ2
red =

1

N−3

N∑
p=1

(
Ip − Icalc(αp)

σp

)2

, (S19)

where Ip and αp are the experimental data (RXS intensities and azimuthal angles, respectively,
from the data shown in Fig. 4 in the main text); σp are the uncertainties in the determination
of the scattering intensities Ip, derived from Gaussian fits to the RXS scans; and Icalc are the
theoretical profiles for the various terms in the charge order, calculated from Eq. S17. Since
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Figure S6: Intensity ratio and minimum vs. azimuthal angle for the three binary models.
a1,a2,a3, Ratio of the calculated RXS intensities at α = 0◦ and α = 90◦ (assuming vertical
polarization) as a function of the symmetry term mixing ratio for s + d, s′ + d, and s + s′,
respectively. The shaded horizontal bar marks the experimental range for YBCO. b1,b2,b3,
Angular position of the minimum RXS intensity (again assuming vertical polarization) as a
function of the symmetry term mixing ratio for s + d, s′ + d, and s + s′, respectively. The
shaded horizontal bar marks the experimental range for YBCO.

Cumulative reduced chi-square χ2
tot

s+ s′ s+ d s′ + d

Bi2201 0.95 0.96 0.96
Y651 0.72 0.49 0.50
Y675 1.94 1.03 1.05

Table S1: Goodness-of-fit for various combinations of s-, s’-, and d-wave symmetry compo-
nents. Values of the cumulative reduced chi-square χ2

tot, obtained after fitting the entire dataset
to the various combinations of symmetry terms under consideration: s+ s′, s+ d, and s′ + d.
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the RXS intensities cannot be expressed in physical units, there is one degree of freedom left,
namely the overall amplitude of the signal; however, a rescaling of the calculated traces will
occur if all the symmetry magnitude parameters (δs, δs′ , and δd) are multiplied by the same
factor. Consistently, the results of our fits are always expressed as ratios of the magnitude
terms. This additional degree of freedom explains the pre-factor N − 3, which comes from the
fact that the sum of squares of the residuals (χ2) is normalized to yield the reduced chi-square
χ2
red, with normalization factor N−p−1, where N is the size of the dataset and p is the number

of parameters (in this case p=2, since we only consider combinations of two symmetry terms).
With this definiton in hand, we have subsequently calculated the cumulative reduced chi-square
χ2
tot for the entire dataset (inclusive of all investigated compounds):

χ2
tot = χ2

red(Bi2201) + χ2
red(Y651) + χ2

red(Y675) (S20)

The values for the cumulative reduced χ2
tot (Table S1) are used to extract the probability P

that the models considered yield a better agreement than a dataset randomly generated from a
normal distribution (with mean-square deviations σ2

p). These probability levels P can be eval-
uated based on the cumulative distribution function for a χ2

red-distribution. The values for P
(Table S2) are the same also reported in Table I in the main text. The outcome for Bi2201
using our model is not conclusive since it yields very similar probability levels for the three 2-
component combinations of symmetry terms. This might be due to the larger degree of disorder
leading to weaker CDW features in RXS and thus to additional noise and scatter in the exper-
imental data for the azimuthal dependence of the RXS intensities. This, in turn, might hinder
our capability of resolving the asymmetry in the azimuthal modulation of the RXS intensity, an
aspect which instead emerges more clearly in YBCO. However, we note that a complementary
approach based on real-space imaging using STM has been successful in detecting d-wave bond
order in bilayer Bi2Sr2CaCu2O6+δ, suggesting that a dominant d-wave component characterizes
the symmetry of the charge order in both YBCO and Bi-based cuprates [15].

15

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4295


NATURE MATERIALS | www.nature.com/naturematerials	 15

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT4295

150

100

50

0

α
 m

in
im

u
m

0.5 0

4

2

0

I 
(α
=
0
°
) 

/ 
I 

(α
=
9
0
°
)

1.00.50 1.00.50 0.5 0 1.00.50 0.5 0

s/d d/s d/s's'/d s/s' s'/s

s+d s’+d s+s’

a1 a2 a3

b1 b2 b3

Exp.

Exp.

s'/d~25%s/d~20%

Figure S6: Intensity ratio and minimum vs. azimuthal angle for the three binary models.
a1,a2,a3, Ratio of the calculated RXS intensities at α = 0◦ and α = 90◦ (assuming vertical
polarization) as a function of the symmetry term mixing ratio for s + d, s′ + d, and s + s′,
respectively. The shaded horizontal bar marks the experimental range for YBCO. b1,b2,b3,
Angular position of the minimum RXS intensity (again assuming vertical polarization) as a
function of the symmetry term mixing ratio for s + d, s′ + d, and s + s′, respectively. The
shaded horizontal bar marks the experimental range for YBCO.

Cumulative reduced chi-square χ2
tot

s+ s′ s+ d s′ + d

Bi2201 0.95 0.96 0.96
Y651 0.72 0.49 0.50
Y675 1.94 1.03 1.05

Table S1: Goodness-of-fit for various combinations of s-, s’-, and d-wave symmetry compo-
nents. Values of the cumulative reduced chi-square χ2

tot, obtained after fitting the entire dataset
to the various combinations of symmetry terms under consideration: s+ s′, s+ d, and s′ + d.

14

the RXS intensities cannot be expressed in physical units, there is one degree of freedom left,
namely the overall amplitude of the signal; however, a rescaling of the calculated traces will
occur if all the symmetry magnitude parameters (δs, δs′ , and δd) are multiplied by the same
factor. Consistently, the results of our fits are always expressed as ratios of the magnitude
terms. This additional degree of freedom explains the pre-factor N − 3, which comes from the
fact that the sum of squares of the residuals (χ2) is normalized to yield the reduced chi-square
χ2
red, with normalization factor N−p−1, where N is the size of the dataset and p is the number

of parameters (in this case p=2, since we only consider combinations of two symmetry terms).
With this definiton in hand, we have subsequently calculated the cumulative reduced chi-square
χ2
tot for the entire dataset (inclusive of all investigated compounds):

χ2
tot = χ2

red(Bi2201) + χ2
red(Y651) + χ2

red(Y675) (S20)

The values for the cumulative reduced χ2
tot (Table S1) are used to extract the probability P

that the models considered yield a better agreement than a dataset randomly generated from a
normal distribution (with mean-square deviations σ2

p). These probability levels P can be eval-
uated based on the cumulative distribution function for a χ2

red-distribution. The values for P
(Table S2) are the same also reported in Table I in the main text. The outcome for Bi2201
using our model is not conclusive since it yields very similar probability levels for the three 2-
component combinations of symmetry terms. This might be due to the larger degree of disorder
leading to weaker CDW features in RXS and thus to additional noise and scatter in the exper-
imental data for the azimuthal dependence of the RXS intensities. This, in turn, might hinder
our capability of resolving the asymmetry in the azimuthal modulation of the RXS intensity, an
aspect which instead emerges more clearly in YBCO. However, we note that a complementary
approach based on real-space imaging using STM has been successful in detecting d-wave bond
order in bilayer Bi2Sr2CaCu2O6+δ, suggesting that a dominant d-wave component characterizes
the symmetry of the charge order in both YBCO and Bi-based cuprates [15].

15

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nmat4295


16	 NATURE MATERIALS | www.nature.com/naturematerials

SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4295

Probability levels P (%)

s+ s′ s+ d s′ + d

Bi2201 51 (s′/s=0.19) 50 (s/d=0.14) 50 (s′/d=0.17)
Y651 82 (s′/s=0.01) 97 (s/d=0.21) 97 (s′/d=0.27)
Y675 0.004 (s′/s=−0.01) 39 (s/d=0.22) 41 (s′/d=0.27)

Cumulative 9.7 80.8 82.2

Cumulative (YBCO) 5.6 83.8 85.5

Table S2: Statistical comparison of CDW models. Probability levels P for the hypothesis
that the models considered fit the experimental data better than a random sample. The ratios
of symmetry components are reported in brackets. The values suggest that a combination of
d-wave bond-order with either s- or s’-wave are associated with a large likelihood of describing
the experimental data.
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