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Monolayer graphene exhibits many spectacular electronic properties,
with superconductivity being arguably the most notable exception.
It was theoretically proposed that superconductivity might be in-
duced by enhancing the electron–phonon coupling through the dec-
oration of graphene with an alkali adatom superlattice [Profeta G,
Calandra M, Mauri F (2012) Nat Phys 8(2):131–134]. Although
experiments have shown an adatom-induced enhancement of
the electron–phonon coupling, superconductivity has never been ob-
served. Using angle-resolved photoemission spectroscopy (ARPES),
we show that lithium deposited on graphene at low temperature
strongly modifies the phonon density of states, leading to an en-
hancement of the electron–phonon coupling of up to λ≃ 0.58. On part
of the graphene-derived π*-band Fermi surface, we then observe the
opening of a Δ≃ 0.9-meV temperature-dependent pairing gap. This
result suggests for the first time, to our knowledge, that Li-decorated
monolayer graphene is indeed superconducting, with Tc ≃5.9 K.
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Although not observed in pure bulk graphite, superconduc-
tivity occurs in certain graphite intercalated compounds

(GICs), with Tc values of up to 11.5 K in the case of CaC6 (1, 2).
The origin of superconductivity in these materials has been
identified in the enhancement of electron–phonon coupling in-
duced by the intercalant layers (3, 4). The observation of a
superconducting gap on the graphitic πp-bands in bulk CaC6 (5)
suggests that realizing superconductivity in monolayer graphene
might be a real possibility. This prospect has, indeed, attracted
intense theoretical and experimental efforts (6–12). In particular,
recent density functional theory calculations have suggested
that, analogous to the case of intercalated bulk graphite, super-
conductivity can be induced in monolayer graphene through the
adsorption of certain alkali metals (8).
Although the Li-based GIC—bulk LiC6—is not known to be

superconducting, Li-decorated graphene emerges as a particu-
larly interesting case with a predicted superconducting Tc of up
to 8.1 K (8). The proposed mechanism for this enhancement of
Tc is the removal of the confining potential of the graphite C6
layers, which changes both the occupancy of the Li 2s band (or
the ionization of the Li) and its position with respect to the
graphene layer. These modifications lead to an increase of the
electron–phonon coupling constant from λ= 0.33 to λ= 0.61, in
going from bulk to monolayer LiC6. It has been argued that the
LiC6 monolayer should exhibit the largest values of both λ and Tc
among all alkali–metal–C6 superlattices (8). Nevertheless, although
there is thorough experimental evidence for adatom-enhanced
electron–phonon coupling in graphene (7, 11, 13), superconduc-
tivity has not yet been observed in decorated monolayer graphene.
Angle-resolved photoemission spectroscopy (ARPES) mea-

surements of the electronic dispersion of pristine and Li-decorated
graphene at 8 K, characterized by the distinctive Dirac cones at the
corners of the hexagonal Brillouin zone (Fig. 1E), are shown in Fig.
1 A and B. Li adatoms electron-dope the graphene sheet by charge
transfer doping, leading to a shift of the Dirac point to higher

binding energies. As evidenced by the evolution of the graphene
sheet carrier density in Fig. 1F, this trend begins to saturate after
several minutes of Li deposition. Concomitantly, we observe the
emergence of a new spectral weight (Fig. 1E) at the Brillouin zone
center (the comparison of the Γ-point ARPES dispersion for pris-
tine and 10-min Li-decorated graphene is shown in Fig. 1 C andD).
The origin of this spectral weight is probably the Li-2s band
expected for this system (8) superimposed with the folded gra-
phene bands caused by a Li superstructure, which were observed
in Li and Ca bulk GIC systems (5, 14). This spectral weight, which
disappears above ∼ 50 K and is not recovered on subsequent
cooling, is associated with the strong enhancement of electron–
phonon coupling (discussed later, see Fig. 3 and SI Appendix).
Next, we use high-resolution, low-temperature ARPES to search

for the opening of a temperature-dependent pairing gap along the
πp-band Fermi surface as a direct spectroscopic signature of the
realization of a superconducting state in monolayer LiC6. To in-
crease our experimental sensitivity, as illustrated in Fig. 2A, using
the approach introduced for FeAs (17) and cuprate (18) super-
conductors, we perform an analysis of ARPES energy distribution
curves (EDCs) integrated in dk along a 1D momentum–space cut
perpendicular to the Fermi surface. This method also provides the
added benefit that the integrated EDCs can be modeled in terms of
a simple Dynes gap function (19) multiplied by a linear background
and the Fermi–Dirac distribution, all convolved with a Gaussian
resolution function (Methods and Eq. 4). As shown in Fig. 2A and
especially, Fig. 2B, for data from the k-space location indicated by
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the white circles in Figs. 1E and 3E, a temperature dependence
characteristic of the opening of a pairing gap can be observed near
EF. The leading-edge midpoints of the Li-graphene spectra move
away from EF (Fig. 2B) in cooling from 15 to 3.5 K, which is at
variance with the case of Au spectra crossing precisely at EF
according to the Fermi–Dirac distribution (Fig. 2D). Fitting these
data with Eq. 4 returns a gap value of Δ= 0.9± 0.2 meV at 3.5 K
(with Γ ’ 0.09 meV). [Note that the parameter Γ in the Dynes
fitting function is not treated as a free-fitting parameter, because the
broadening of the coherence peaks and filling in of the gap are
dominated by the experimental energy resolution. However, setting
this parameter to small realistic values (Γ∼ 0.1Δ) improves the fit at
the center of the gap (i.e., at E = 0 in the symmetrized data) without
affecting the value of the gap itself.] Given its small value compared
with the experimental resolution, the gap opening is best visualized
in the symmetrized data in Fig. 2C, which minimize the effects of
the Fermi function. Finally, we note that the gap appears to be
anisotropic and is either absent or below our detection limit along
the K −M direction (SI Appendix, Fig. S4).
The detection of a temperature-dependent anisotropic gap at

the Fermi level with a leading-edge profile described by the
Dynes function—with its asymmetry about EF and associated
transfer of spectral weight to just below the gap edge—is sug-
gestive of a superconducting pairing gap. The phenomenology
would, in fact, be very different in the case of a Coulomb gap,
which is typically observed in disordered semiconductors (23–25)
because of the combination of disorder with long-range Coulomb
interactions. A Coulomb gap would lead to a rigid shift of the
spectra leading edge (isotropic in momentum) and result in a
vanishing of the momentum-integrated density of states at EF.
Similarly, the observed gap is unlikely to have a charge density
wave origin, because the observed gap is tied to the Fermi energy

as opposed to a particular high-symmetry wavevector (the latter
might occur at the M points, when graphene is doped all of the
way to the Van Hove singularity, resulting in a highly nested
hexagonal Fermi surface; or the K points, in the case of affiffiffi
3

p
  ×

ffiffiffi
3

p
  R  30° reconstruction, leading to a Dirac point gap).

Finally, we note that these measurements do not allow us to
speculate on the precise symmetry of the gap along a single Dirac
cone–Fermi surface or the relative phases of the gap on the six
disconnected Fermi pockets. As such, our results do not rule out
any of the recent proposals for a possible unconventional super-
conducting order parameter in graphene (9, 26, 27).
To further explore the nature of the gap observed on Li-

decorated graphene (and also show our ability to resolve a gap of
the order of 1 meV), in Fig. 2 E and F, we show as a benchmark
comparison the analogous results from a bulk polycrystalline
niobium sample—a known conventional superconductor with
Tc ’ 9.2 K. The Dynes fit of the integrated EDCs Fermi edge in
Fig. 2E determines the gap to be Δ= 1.4± 0.2 meV (with
Γ ’ 0.14meV), in excellent agreement with reported values (28).
Although the leading-edge shift (Fig. 2E) and the dip in the
symmetrized spectra (Fig. 2F) are more pronounced than for Li-
graphene owing to the larger gap, the behavior is qualitatively
very similar. This similarity provides additional support to the
superconducting origin of the temperature-dependent gap ob-
served in Li-decorated graphene.
If the spectroscopic gap observed in Li-graphene is, indeed, a

superconducting gap, the responsible mechanism may likely be
electron–phonon coupling, which was predicted by the theory for
monolayer Li-graphene (8) and also, seen experimentally for the
bulk GIC CaC6 (5). In direct support of this scenario, we present
a detailed analysis of the graphene πp-bands in Fig. 3, showing
that the Li-induced enhancement of the electron–phonon coupling

A B C E

FD

Fig. 1. Charge transfer doping of graphene by lithium adatoms. Dirac-cone dispersion measured by ARPES at 8 K (A) on pristine graphene and (B) after 3 min of Li
evaporation along the K-point momentum cut indicated by the white line in the Fermi surface plot in E. The Dirac cone–Fermi surface was measured at this specific
K point and then replicated at the other K points by symmetry (note that high-symmetry points are here defined for the Brillouin zone of pristine graphene and
not of

ffiffiffi
3

p
×

ffiffiffi
3

p
R30° reconstructed Li-graphene, which is, instead, the notation in ref. 8). The point at which the spectroscopic gap is studied is indicated by the

shaded white circle. The Dirac point, (A) already located below EF on pristine graphene because of the charge transfer from the SiC substrate, further shifts to
higher energies with (B) Li evaporation. The presence of a single well-defined Dirac cone indicates a macroscopically uniform Li-induced doping. (C) Although no
bands are present at the Γ-point on pristine graphene, spectral weight is detected on 10-min Li-decorated graphene in D and E. As illustrated in the 8 K sheet
carrier density plot vs. Li deposition time in F, which accounts for the filling of the π* Fermi surface, the spectral weight at Γ is observed for charge densities
n2D J 9× 1013 cm-2 (but completely disappears if the sample temperature is raised above ∼ 50 K and is not recovered on subsequent cooling) (SI Appendix).
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is, indeed, sufficient to stabilize a low-temperature superconducting
state. Graphene doped with alkali adatoms always shows a strong
kink in the πp-band dispersion at a binding energy of about 160 meV
(11). For the Li-graphene studied here, the same effect is seen in the
momentum distribution curve (MDC) dispersions and the corre-
sponding real part of the self-energy Σ′ in Fig. 3 B–D. This structure
stems from the coupling to carbon in-plane (Cxy) phonons (4, 8).
Despite the apparent strength of this kink, the interaction with these
phonon modes contributes little to the overall coupling parameter
because of their high energy (note that ω is a weighting factor in
the integral calculation of λ) (Methods). As illustrated by the white
circles in Fig. 3I, the contribution to λ from these high-energy
(100–200 meV) modes is determined to be 0.14± 0.05, and it re-
mains approximately constant for all Li coverages studied here.
This value is, however, too small to stabilize a superconducting
state in this system (8, 11).
With increasing Li coverage and the appearance of the spec-

tral weight at Γ, significant modifications to the low-energy part
of the dispersion (K 100 meV) become apparent (Fig. 3 B–D).
With 10 min of Li deposition (Fig. 3D), an additional kink is
visible at a binding energy of ∼30 meV along with the associ-
ated peak in the real part of the self-energy Σ′. The extracted
(Methods) Eliashberg functions and energy-resolved λðωÞ in Fig.

3 F–H show that, at high Li coverage, phonon modes at energies
below 60 meV are coupling strongly to the graphene electronic
excitations. The phonon modes in this energy range are of Li in-
plane (Lixy) and C out-of-plane (Cz) character (4, 8). This as-
signment is in agreement with predictions (8) as shown by the
direct comparison between theory and experiment in Fig. 3H.
[As for the theoretical and experimental Eliashberg functions
α2Fðk,ωÞ in Fig. 3H, the agreement may, at first glance, appear
not as good as the one for λðωÞ. We note, however, that, in this
regard, the relevant information is in the macroscopic energy
distribution of the α2Fðk,ωÞ weight rather than in its detailed
structure.] As for the total electron–phonon coupling λ for each
coverage (black circles in Fig. 3I), our values measured on the
πp-band Fermi surface at an intermediate location between Γ−K
and K −M directions (Fig. 3E) provide an effective estimate for
the momentum-averaged coupling strength. [The electron–phonon
coupling parameter increases monotonically along the πp-band
Fermi surface in going from the Γ−K to the K −M direction as
observed in both decorated graphene (11) and intercalated
graphite (29). Empirically, the value measured at the interme-
diate Fermi crossing corresponds to the momentum-averaged
coupling strength along the πp-band Fermi surface.] Remarkably,
the value λ= 0.58± 0.05 observed at the highest Li coverage

A B C

D E F

Fig. 2. Spectroscopic observation of a pairing gap in Li-decorated graphene. (A) Dirac dispersion from 10-min Li-decorated graphene measured at 15 and
3.5 K at the k-space location indicated by the white circles in Figs. 1E and 3E; the temperature dependence is here evaluated for EDCs integrated in the 0.1-Å-1

momentum region about kF shown by the white box in Lower, with (Upper) the only changes occurring near EF. (D) Although Au spectra cross at Ef as
described by the Fermi–Dirac distribution, (B) the crossing points of the Li-graphene spectra are shifted away from EF (cyan dashed line) because of the pull
back of the leading edge at 3.5 K. A fit to the Dynes gap equation (Methods) yields a gap of Δ ’ 0.9 meV at 3.5 K (and 0 meV at 15 K). The superconducting
gap opening is best visualized in the symmetrized data in C [i.e., by taking IðωÞ+ Ið−ωÞ, which minimizes the effects of the Fermi function, even in the case of
finite energy and momentum resolutions (15, 16); blue and red symbols in C represent the smoothed data, whereas the light shading gives the rmsds of the
raw data]. The qualitatively similar behavior observed on polycrystalline niobium—and returning a superconducting gap Δ ’ 1.4 meV—is shown in E and F.

Ludbrook et al. PNAS | September 22, 2015 | vol. 112 | no. 38 | 11797

PH
YS

IC
S



(Fig. 3I) is comparable with λ= 0.61 predicted for monolayer
LiC6 (8) as well as λ ’ 0.58 observed for bulk CaC6 (29)—it is,
thus, large enough for inducing superconductivity in Li-decorated
graphene. It is also significantly larger than the momentum-
averaged results previously reported for both Li and Ca depositions
on monolayer graphene [λ ’ 0.22 and λ ’ 0.28, respectively (11)].
We note that achieving such a large λ-value is critically dependent
on the presence of the spectral weight observed at Γ when Li is
deposited on graphene at low temperatures, presumably forming an
ordered structure on the surface and not intercalating. As shown in
SI Appendix, we find λ= 0.13± 0.05 after the same sample is
annealed at 60 K for several minutes, destroying the Li order and
associated Γ-spectral weight.
Taken together, our ARPES study of Li-decorated monolayer

graphene provides evidence for the presence of a temperature-
dependent pairing gap on part of the graphene-derived πp Fermi
surface. The detailed evolution of the density of states at the gap
edge as well as the phenomenology analogous to the one of
known superconductors, such as Nb—as well as CaC6 and
NbSe2, which also show a similarly anisotropic gap around the K
point (30–34)—indicate that the pairing gap observed at 3.5 K in
graphene is most likely associated with superconductivity. Based
on the Bardeen–Cooper–Schrieffer gap equation, Δ= 3.5  kb   Tc,
we estimate a superconducting transition temperature Tc ’ 5.9 K,
remarkably close to the value of 8.1 K found in density func-
tional theory calculations (8). This work constitutes the first, to
our knowledge, experimental realization of superconductivity
in graphene—the most prominent electronic phenomenon still
missing among the remarkable properties of this single layer of
carbon atoms.

Methods
Sample Preparation. Epitaxial graphene monolayers with a carbon buffer layer
were grown under argon atmosphere on hydrogen-etched 6H-SiC(0001) sub-
strates as described in ref. 35. The samples were annealed at 500 °C and 8 × 10-10

torr for 1 h immediately before the ARPES measurements. Lithium adatoms
were deposited from a commercial SAES alkali metal source, with the graphene
samples held at a temperature of 8 K. Bulk Nb polycrystalline samples, with
Tc = 9.2 K, were cleaved in the ARPES chamber before the experiments.

ARPES Experiments. The measurements were performed at the University of
British Columbia with s-polarized 21.2-eV photons on an ARPES spectrom-
eter equipped with a SPECS Phoibos 150 Hemispherical Analyzer, a SPECS
UVS300 Monochromatized Gas Discharge Lamp, and a six-axes cryogenic
manipulator that allows for controlling the sample temperature between
300 and 3.5 K, with accuracy ±0.1 K. Band and Fermi surface mapping as well
as the study of electron–phonon coupling were performed at 8 K, with
energy and angular resolution set to 15 meV and 0.01 Å-1, respectively. For
the measurements of the superconducting gaps, energy and angular resolu-
tion were set to 6 meV and 0.01 Å-1, and the sample temperature was varied
between 3.5 and 15 K. During the ARPES measurement, the chamber pressure
was better than 4 × 10-11 torr.

Electron–Phonon Coupling Analysis. The spectral function Aðk,ωÞmeasured by
ARPES (36) provides information on both the single-particle electronic dis-
persion «bk (the so-called “bare band”) and the quasiparticle self-energy
Σðk,ωÞ=Σ′ðk,ωÞ+ iΣ′′ðk,ωÞ, which have real and imaginary parts that ac-
count for the renormalization of electron energy and lifetime caused by
many-body interactions, including electron–phonon coupling. By fitting with
a Lorentzian and a constant background, the ARPES intensity profiles at
constant energy ω= ~ω known as MDCs, one obtains the MDC dispersion
defined by the peak maximum km (plotted in Fig. 3 A–D) as well as the
corresponding half-width half-maximum Δkm. The real and imaginary parts
of the self-energy can then be defined as

Σ′
~ω = ~ω− «bkm

Σ′′
~ω = −Δkmvbkm ,

[1]

where vbkm is the bare-band velocity. To extract the self-energy and disper-
sion without any a priori knowledge of the bare band, we use the self-
consistent Kramers–Kronig bare-band fitting routine from refs. 20 and 21
(SI Appendix). As for the dimensionless k-resolved electron–phonon coupling
constant discussed in the paper and particularly, Fig. 3 F–I, this quantity is
formally defined as (37)

λkðωÞ=   2
Z ω

0
dω′ 

α2F
�
k,ω′

�
ω′

, [2]

where α2Fðk,ωÞ is the Eliashberg function [i.e., the phonon density of
states weighted by the electron–phonon coupling strength (37)]. The lat-
ter is related to the real part of the self-energy Σ′ðk,ωÞ through the in-
tegral relation

A B C D E

F G H I

Fig. 3. Analysis of electron–phonon coupling in Li-decorated graphene. (A) Dirac dispersion from 3-min Li-decorated graphene along the k-space cut
indicated in the Fermi surface plot in E that exhibits kink anomalies caused by electron–phonon coupling (white line indicates MDC dispersion). (B–D)
MDC dispersion and bare bands obtained from the self-consistent Kramers–Kronig bare-band fitting (KKBF) routine (20, 21) for several Li coverages
(Methods and SI Appendix); the real part of the self-energy Σ′ is shown in Right (orange indicates Σ′ from the KKBF routine analysis, and black in-
dicates Σ′ corresponding to the Eliashberg function presented below). (F–H) Eliashberg function α2FðωÞ from the integral inversion of Σ′ðωÞ (22) and
electron–phonon coupling constant λ= 2

R
dω  α2FðωÞ=ω (Methods and SI Appendix); in H, the theoretical results from ref. 8 for a LiC6 monolayer are

also shown (gray shading). (I) Experimentally determined contribution to the total electron–phonon coupling (black circles) from phonon modes in
the energy ranges 100–250 meV (blue shading and white circles) and 0–100 meV (orange shading); the coupling of low-energy modes strongly in-
creases with Li coverage.
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Σ′ðk,ωÞ=
Z ∞

0
dω′α2F

�
k,ω′

�
  K

�
ω

kT
,
ω′
kT

�
  , [3]

where Kðy, y′Þ= R+∞
−∞ dx   fðx − yÞ  2y′=ðx2 − y ′  2Þ and fðx − yÞ is the Fermi–Dirac

distribution. The momentum resolved α2Fðk,ωÞ function plotted in Fig. 3 F–H
can then be extracted from the real part of the self-energy Σ′ðk,ωÞ probed
by ARPES by the integral inversion procedure described in ref. 22. Ultimately,
by means of Eq. 2, this approach also allows the calculation of the electron–
phonon coupling constant shown in Fig. 3 (SI Appendix).

Superconducting Gap Fitting. As discussed in detail for the cases of FeAs and
cuprate superconductors in refs. 17 and 18, respectively, when evaluating the
opening of a superconducting gap based on the EDCs integrated in dk along
a 1D momentum–space cut perpendicular to the Fermi surface (such as those
presented in Fig. 2), one can make use of the following formula:

IR dkðωÞ=

2
64fðω, TÞ  ða+b  ωÞ

�����Re
ω− iΓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω− iΓÞ2 −Δ2
q

����� 
3
75⊗Rω   . [4]

This equation corresponds to the Dynes gap function [i.e., the Bardeen–
Cooper–Schrieffer density of states with a superconducting gap Δ broad-
ened by the pair-breaking scattering rate Γ (19)] multiplied by a linear
background (with parameters a and b) and the Fermi–Dirac distribution

fðω, TÞ all convolved with a Gaussian function Rω accounting for the ex-
perimental energy resolution [owing to the integration of the ARPES in-
tensity in dk, this analysis is unaffected by momentum resolution (17)]. The
high- and low-temperature ARPES data in Fig. 2 are fitted simultaneously
using the above equation according to the following additional consider-
ations. Because the integrated EDCs were observed not to change outside
of the gap region, the linear background is constrained to be the same for
the above and below Tc measurements. The temperatures are fixed to the
known measured values (with accuracy ±0.1 K). The Fermi energy EF and
energy resolution are determined from fitting the high-temperature data
from either Nb or Li-graphene during each measurement and independently
verified from measurements on polycrystalline gold.

ACKNOWLEDGMENTS. We thank D. A. Bonn, S. A. Burke, M. Calandra,
A. Chubukov, E. H. da Silva Neto, J. A. Folk, M. Franz, P. Hofmann, A. F. Morpurgo,
G. Profeta, G. A. Sawatzky, and S. Ulstrup for valuable discussions and
P. Trochtchanovitch and M. O’Keane for technical assistance. This work was
supported by the Max Planck–UBC Centre for Quantum Materials; the Postdoc-
toral Fellowship Program (S.Z.) of the Natural Sciences and Engineering Re-
search Council of Canada (NSERC); the Killam, Alfred P. Sloan, Alexander von
Humboldt, and NSERC’s Steacie Memorial Fellowship Programs (A.D.); the Can-
ada Research Chairs Program (A.D.); NSERC; the Canada Foundation for Inno-
vation (CFI); the Quantum Materials Program of the Canadian Institute for
Advanced Research (CIFAR); and by the Deutsche Forschungsgemeinschaft
(DFG) in the framework of the Priority Program SPP 1459, Graphene (A.S.
and U.S.).

1. Emery N, et al. (2005) Superconductivity of bulk CaC6. Phys Rev Lett 95(8):087003.
2. Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT (2005) Superconductivity in the

intercalated graphite compounds C6Yb and C6Ca. Nat Phys 1(1):39–41.
3. Mazin II (2005) Intercalant-driven superconductivity in YbC6 and CaC6. Phys Rev Lett

95(22):227001.
4. Calandra M, Mauri F (2005) Theoretical explanation of superconductivity in C6Ca.

Phys Rev Lett 95(23):237002.
5. Yang S-L, et al. (2014) Superconducting graphene sheets in CaC6 enabled by phonon-

mediated interband interactions. Nat Commun 5:3493.
6. Uchoa B, Castro Neto AH (2007) Superconducting states of pure and doped graphene.

Phys Rev Lett 98(14):146801.
7. McChesney JL, et al. (2010) Extended van Hove singularity and superconducting in-

stability in doped graphene. Phys Rev Lett 104(13):136803.
8. Profeta G, Calandra M, Mauri F (2012) Phonon-mediated superconductivity in gra-

phene by lithium deposition. Nat Phys 8(2):131–134.
9. Nandkishore R, Levitov LS, Chubukov AV (2012) Chiral superconductivity from re-

pulsive interactions in doped graphene. Nat Phys 8(2):158–163.
10. Guzman D, Alyahyaei H, Jishi R (2013) Superconductivity in graphene-lithium. arXiv:

1310.3813v1.
11. Fedorov AV, et al. (2014) Observation of a universal donor-dependent vibrational

mode in graphene. Nat Commun 5:3257.
12. Margine ER, Giustino F (2014) Two-gap superconductivity in heavily n-doped gra-

phene: Ab initio Migdal-Eliashberg theory. Phys Rev B Condens Matter Mater Phys
90(1):014518.

13. Bianchi M, et al. (2010) Electron-phonon coupling in potassium-doped graphene:
Angle-resolved photoemission spectroscopy. Phys Rev B Condens Matter Mater Phys
81(4):041403.

14. Sugawara K, Sato T, Takahashi T (2008) Fermi-surface-dependent superconducting
gap in C6Ca. Nat Phys 5(1):40–43.

15. Norman M, et al. (1998) Destruction of the Fermi surface in underdoped high-Tc su-
perconductors. Nature 392(6672):157–160.

16. Mesot J, et al. (2001) Determination of the Fermi surface in high-Tc superconductors
by angle-resolved photoemission spectroscopy. Phys Rev B Condens Matter Mater
Phys 63(22):224516.

17. Evtushinsky DV, et al. (2009) Momentum dependence of the superconducting gap in
Ba1-x KxFe2 As2. Phys Rev B Condens Matter Mater Phys 79(5):054517.

18. Reber TJ, et al. (2012) The origin and non-quasiparticle nature of Fermi arcs in Bi2 Sr2
CaCu2 O8+δ. Nat Phys 8(8):606–610.

19. Dynes R, Narayanamurti V, Garno J (1978) Direct measurement of quasiparticle-
lifetime broadening in a strong-coupled superconductor. Phys Rev Lett 41(21):
1509–1512.

20. Veenstra CN, Goodvin G, Berciu M, Damascelli A (2010) Elusive electron-phonon
coupling in quantitative analyses of the spectral function. Phys Rev B Condens Matter
Mater Phys 82(1):012504.

21. Veenstra CN, Goodvin G, Berciu M, Damascelli A (2011) Spectral function tour of
electron-phonon coupling outside the Migdal limit. Phys Rev B Condens Matter Mater
Phys 84(8):085126.

22. Shi J, et al. (2004) Direct extraction of the Eliashberg function for electron-phonon
coupling: A case study of Be(1010). Phys Rev Lett 92(18):186401.

23. Efros A, Shklovskii B (1975) Coulomb gap and low temperature conductivity of dis-
ordered systems. J Phys Chem 8:L49.

24. Davies JH, Franz JR (1986) Coulomb gap in sodium tungsten bronzes. Phys Rev Lett
57(4):475–478.

25. Massey JG, Lee M (1995) Direct observation of the coulomb correlation gap in a
nonmetallic semiconductor, Si:B. Phys Rev Lett 75(23):4266–4269.

26. Raghu S, Kivelson SA, Scalapino DJ (2010) Superconductivity in the repulsive Hubbard
model: An asymptotically exact weak-coupling solution. Phys Rev B Condens Matter
Mater Phys 81(22):224505.

27. Nandkishore R, Thomale R, Chubukov AV (2014) Superconductivity from weak re-
pulsion in hexagonal lattice systems. Phys Rev B Condens Matter Mater Phys 89(14):
144501.

28. Carbotte JP (1990) Properties of boson-exchange superconductors. Rev Mod Phys
62(4):1027–1157.

29. Valla T, et al. (2009) Anisotropic electron-phonon coupling and dynamical nesting on
the graphene sheets in superconducting CaC6 using angle-resolved photoemission
spectroscopy. Phys Rev Lett 102(10):107007.

30. Sanna A, et al. (2007) Anisotropic gap of superconducting CaC6: A first-principles
density functional calculation. Phys Rev B Condens Matter Mater 75(2):020511.

31. Sanna A, et al. (2012) Phononic self-energy effects and superconductivity in CaC6.
Phys Rev B Condens Matter Mater Phys 85(18):184514.

32. Gonnelli RS, et al. (2008) Evidence for gap anisotropy in CaC6 from directional point-
contact spectroscopy. Phys Rev Lett 100(20):207004.

33. Kiss T, et al. (2007) Charge-order-maximized momentum-dependent superconduc-
tivity. Nat Phys 3(10):720.

34. Borisenko SV, et al. (2009) Two energy gaps and Fermi-surface “arcs” in NbSe2. Phys
Rev Lett 102(16):166402.

35. Forti S, Starke U (2014) Epitaxial graphene on SiC: From carrier density engineering to
quasi-free standing graphene by atomic intercalation. J Phys D Appl Phys 47(9):
094013.

36. Damascelli A (2004) Probing the electronic structure of complex systems by ARPES.
Phys Scr T 109:61–74.

37. Grimvall G (1981) The Electron-Phonon Interaction in Metals, ed Wohlfart E (North-
Holland, New York).

Ludbrook et al. PNAS | September 22, 2015 | vol. 112 | no. 38 | 11799

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1510435112/-/DCSupplemental/pnas.1510435112.sapp.pdf


Supplementary Information Appendix:

Evidence for superconductivity in Li-decorated monolayer graphene

B.M. Ludbrook,1, 2 G. Levy,1, 2 P. Nigge,1, 2 M. Zonno,1, 2 M. Schneider,1, 2

D.J. Dvorak,1, 2 C.N. Veenstra,1, 2 S. Zhdanovich,2, 3 D. Wong,1, 2 P. Dosanjh,1, 2
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LITHIUM DEPOSITION ON MONOLAYER GRAPHENE

Lithium was deposited on monolayer graphene at a sample temperature of 8 K. Charge transfer from the Li electron
dopes the graphene. At the saturation of doping, we find a sheet charge-carrier density n2D'9×1013 cm−2. Assuming
Li forms an ordered LiC6 structure after 4 minutes evaporation (i.e. one Li per three unit cells), this corresponds to
a charge transfer to the graphene π∗ bands of 0.14±0.02 electrons per Li adatom. This is significantly lower than
what is reported in Li-intercalated compounds, where the Li was found to be completely ionized [1], and results in
the incomplete ionization of the Li-2s electrons. This is necessary in order to form a Li band at the Γ point, which in
turn has been identified as an important element in the enhancement of the electron-phonon coupling [2–4].

The spectral weight at Γ that appears with the saturation of doping at low temperature is consistent with the
superposition of a Li 2s band with a band folding due to a

√
3 ×
√

3R 30◦ Li superstructure. On the one hand, the
dispersion [see Fig. 1(d) in the paper] is reminiscent of a folded Dirac cone. On the other hand, the Fermi surface from
10-minute Li-decorated graphene in Fig.1(e) of the paper hints that the Li 2s band is also present at Γ, in addition to
the folded π and π∗ bands: the Fermi surface pocket at Γ is circular – and not 6-fold symmetric as expected for the
folded Dirac bands – and its volume slightly larger, in agreement with calculations [2]. Disambiguation is difficult,
as these bands all lie in the same energy and momentum region. Here we note simply that, empirically speaking, the
spectral weight is present and it is important for the observation of the enhanced electron-phonon coupling (discussed
below), and hence presumably also for the observation of the spectroscopic gap at the Fermi level.

EFFECTS OF TEMPERATURE

Increasing the temperature above 20 K leads to a progressive reduction of the charge transfer doping [Fig. S1(a)
& Fig. S2], and at ∼50 K, to the disappearance of the backfolded spectral weight [Fig. S1(b)], arguably due to the
complete disordering of the Li superstructure. The Γ point folded weight, and thus the Li ordering, do not reappear
upon subsequent cooling. A significant broadening of the π∗ bands with increasing temperature is also apparent, which
again signifies increasing surface disorder due to the progressive degradation of the Li superstructure, as opposed to a
damaging of the graphene sample itself; in fact, annealing to ∼ 300◦ C fully recovers the dispersion and linewidth of
pristine graphene. For temperatures between 3.5 K and 20 K, the Li adatoms appear stable on the graphene surface.
Fermi surfaces measured at 7 K, 13 K, and 17 K exhibit no change in volume within the bounds of uncertainty, as
summarized in the evolution of the charge density n with temperature in Fig. S2.

We also see no evidence of the lithium intercalating beneath the graphene layer, in agreement with a previous study
that found lithium to reside on top of monolayer graphene at temperatures around 50 K [5]. The strong temperature
dependence of the doping seen here implies the Li atoms can become mobile above 20 K, typical of adatoms at a
surface. This is in stark contrast with behaviour seen in Li-intercalated bulk graphite and bilayer graphene [1, 6], in
which the doping from the intercalated lithium remains stable up to room temperature.

The enhancement of the electron-phonon coupling with increasing Li coverage can be reversed by increasing the
temperature above 50 K, the point at which the spectral weight at Γ vanishes. Measurements were made on a 10
minute Li-decorated sample [Fig. S3(a)], and the same sample after annealing to 60 K for several minutes [Fig. S3(b)].
Both measurements were done at 8 K. After annealing, we see the near total disappearance of the low-energy renor-
malizations of the band, and the corresponding peak in Σ′. The contribution to α2F (ω) from below 100 meV is
severely diminished, while the high energy part remains dominated by a double feature between 140 and 180 meV.
The coupling is determined to be 0.13± 0.05, reduced from ' 0.58, and close to the value of the low-coverage sample.
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FIG. 1. Temperature dependence of the band dispersion in Li-Graphene. (a1-a5) ARPES measurements through the
Dirac point at K showing a reduction in the n-type doping as the temperature is increased. A significant broadening of the
bands can also be seen, particularly above 50 K, which is an indication of surface disorder. (b1-b5) ARPES measurements at
Γ showing the complete disappearance of the spectral weight at 50 K.
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FIG. 2. Evolution of the charge density n with temperature. The charge density, determined from the Fermi surface
volume of the graphene π∗ bands, is shown for a graphene sample with 5-min. Li. At temperatures below ∼20 K the doping is
stable. Above ∼20 K, however, there is a reduction of n with increasing temperature, with the sheet carrier density returning
to the starting value of clean graphene (1× 1013 cm−2) at around 100 K.
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FIG. 3. Reversible enhancement of the electron-phonon coupling. The MDC dispersion (orange) and real part of the
self energy (orange, right-hand panel) for the 10-minute Li sample in (a) show the strong kink at around 30 meV. (b) After
annealing to 60 K for several minutes, the low energy feature is no longer apparent. (c) The Eliashberg functions corresponding
to the fits to the self energy (black) in (a) and (b) are shown in light orange and light blue respectively. The absence of the
low energy feature results in a severely diminished λ, shown as the solid lines in (c).

ANISOTROPY OF THE GAP

High-resolution measurements performed at the high symmetry point along K-M do not show a gap [Fig. S4]. The
EDC of the Li-G at this point on the Fermi surface has its crossing point at 0, and the shape of the edge is the
same as a reference measurement on polycrystalline gold. The slight difference in the slope of the edge crossing
zero is attributed to a small difference in the experimental resolution between the two measurements. The gap is
either closed or too small to measure with the resolution of this study. Either way, it demonstrates an anisotropy
of the gap. This is perhaps not so surprising as bulk CaC6 is thought to have an anisotropic superconducting gap [7–9].
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FIG. 4. Absence of a gap along KM. EDC at EF at the corner of the triangular Fermi surface, as indicated by the white
circle in the inset, for Li-Graphene (blue), as well as polycrystalline gold (yellow). Both measurements were done at 3.5 K.
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SELF-ENERGY ANALYSIS

The spectral function measured by ARPES can be analyzed in terms of constant energy (ω = ω̃) momentum
distribution curves (MDCs). The lineshape is Lorentzian, and can be fitted with [10]:

Aω̃(k) ' A0

π

∆km
(k − km)2 + (∆km)2

, (1)

with

∆km = HWHM, (2)

A0 =

∫
Aω̃(k)dk. (3)

The MDC dispersion is given by the peak maximum km at each energy, and is shown in Figs. S5(a-c) in black. The
real and imaginary parts of the self-energy are related to these quantities by:

Σ′ω̃ = ω̃ − εbkm
,

Σ′′ω̃ = −∆kmv
b
km
, (4)

where εbkm
is the energy of the bare-band at km and vbkm

is the bare-band velocity. The self-energy thus depends on
the choice of bare band, which is not known a priori. The bare-band is constrained to be a second order polynomial,
and must coincide with the MDC dispersion at the Fermi level. Using the fact that the real and imaginary parts of
the self-energy are Kramers-Kronig related, the bare-band parameters are varied until the quantities Σ′ − KK[Σ′′]
and Σ′′ − KK[Σ′] are minimised, resulting in a self-consistent simultaneous determination of the bare-band and
self-energy. The ‘best fit’ bare-band is shown in gray in Figs. S5(a-c), while the corresponding self-energies, and their
KK transforms, are shown in orange and blue respectively, in panels (d)-(f).
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FIG. 5. Self-consistent self-energy analysis. MDC dipersions determined by fitting the ARPES data with Eqn. 1 plotted in
orange in (a-c) are used to extract the self-energy using a self-consistent Kramers-Kronig procedure described. The bare-band
[gray in (a-c)] corresponds to the real and imaginary parts of the self-energy calculated from Eqn. 4 plotted in orange in panels
(d-f). The correct bare-band is identified by the good agreement between the real and imaginary parts of the self-energy, and
their KK transforms (blue).
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EXTRACTION OF ELIASHBERG FUNCTION

The real part of the self-energy is related to the bosonic spectrum by

Σ′(k, ω)=

∫ ∞
0

dω′ α2F (k, ω′)K

(
ω

kT
,
ω′

kT

)
, (5)

where K(y, y′)=
∫ +∞
−∞ dx f(x−y) 2y′/(x2−y′ 2) and f(x−y) is the Fermi-Dirac distribution. The momentum resolved

α2F (ω) function is extracted from the self-energy by an integral inversion procedure using a maximum entropy method
(MEM) [11]. The results of this fitting procedure can be seen in Fig. S6 where the α2F (ω) in panels (g-i) correspond
to the very good fits to Σ′ in the lower panels of (d-f), and the corresponding calculated MDC dispersion (black)
in panels (a-c). The KK transform of the fit to Σ′ is compared to the experimental Σ′′ in panels (d2-f2) and the
agreement is good, with the dominant steps occurring at energy of the peaks in α2F (ω).

The momentum-resolved electron-phonon coupling strength is defined as [12]:

λk(ω) = 2

∫ ω

0

dω′
α2F (k, ω′)

ω′
, (6)

As a consistency check on the analysis and extraction of the electron-phonon coupling strength, we have done a
parallel analysis of the 6-minute Li-decorated sample using a simplified model of α2F (ω) consisting of four Lorentzians
whose position, width, and area can be varied in order to simultaneously fit the real and imaginary parts of the self-
energy. The α2F (ω) found with this method is in good agreement with that found by the maximum-entropy method,
with the main peaks at the same energies. The resulting λ = 0.55 ± 0.05 is slightly larger than the value from the
maximum-entropy method (0.46±0.05), an effect that has been previously observed when comparing these analysis
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FIG. 6. Self-energy and determination of the Eliashberg function. The MDC dispersion (black) and bare band (gray)
from the KKBF routine are shown in panels (a-c), while the real and imaginary parts of the self-energy are shown in orange
in panels (d-f). The maximum entropy method inversion results in an excellent fit to Σ′ (black, d1-f1) and it’s KK transform
(blue) compares favourably with Σ′′ (orange). The Eliashberg functions from each fit are plotted in panels (g-i). Using the
results of the fits, the dispersion can be calculated, and is shown in black in panels (a-c).
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methods in other materials [13]. The Lorentzian method is less sensitive to the details of the MDC dispersion, and
hence less sensitive to the noise in the data. In this sense, it is a good consistency check on the maximum-entropy
method analysis. However, given its tendency to overstate the value of λ, we focus primarily on the more conservative
results from the maximum-entropy method.
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FIG. 7. Comparison of two methods for determining α2F (ω) and λ. The real and imaginary parts of the self-energy for
the 6-minute Li-decorated sample are shown in orange in (a) and (b). The maximum-entropy method is used to fit Σ′ in black
in (a1), and its Kramers-Kronig transform is shown in blue in (a2). The Eliashberg function and electron-phonon coupling
constant λ are shown in (c). An alternate method for extracting α2F (ω) by simultaneously fitting the real and imaginary parts
of the self-energy with equal weighting is shown in (b). The Eliashberg function, which consists of four Lorentzians whose
position and size is varied to achieve a good fit, is shown in (d), along with λ.
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