
conjecture of H. W. Babcock (12) that the ob-
served polar fields represent the poloidal field
source for the subsurface toroidal field.
As also first suggested by Babcock, the net axial

dipole moment represented by the polar fields
results from the north-south dipole moments
contributed by the individual sunspot groups
and bipolar magnetic regions at the surface as a
result of their systematic tilt with respect to the
east-west direction (3). The tilt probably origi-
nates in oneway or another from rotation via the
Coriolis force: either by providing helicity to con-
vective flows bringing magnetic flux to the sur-
face or by twisting buoyantly rising flux loops.
The concept of Babcock was further developed
by Leighton (13), who introduced the notion of
surface flux transport for the buildup of the polar
fields in connection with the dynamo process.
More recently, surface flux transport models suc-
cessfully reproduced the observed evolution of the
surface fields and, in particular, the polar fields
on the basis of the observed records of sunspot
groups as flux input (14–18). This implies that the
tilt of the larger bipolar magnetic regions deter-
mines the polar fields. Small bipolar regions and
small-scale correlations are irrelevant in this re-
spect. Together with the results shown here, this
establishes the key part of the surface fields in
the solar dynamo process and thus corroborates
the basic dynamo concept of Babcock (12) and
Leighton (13).
The key role played by the polar fields in the

generation of toroidal flux explains the strong
empirical correlation between the strength of the
polar field (19) and the Sun’s open flux (20) around
activity minimum with the number of sunspots
of the subsequent activity cycle, which can be
taken as a proxy for the underlying toroidal flux.
Although the correlation is not perfect, which
can be ascribed to randomness associated with
the flux emergence process, it provides the best
available method to predict the strength of the
next cycle (21, 22). Our results put thismethod on
a firm physical basis.
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Broken translational and rotational
symmetry via charge stripe order
in underdoped YBa2Cu3O6+y
R. Comin,1,2* R. Sutarto,3 E. H. da Silva Neto,1,2,4,5 L. Chauviere,1,2,5 R. Liang,1,2

W. N. Hardy,1,2 D. A. Bonn,1,2 F. He,3 G. A. Sawatzky,1,2 A. Damascelli1,2*

After the discovery of stripelike order in lanthanum-based copper oxide superconductors,
charge-ordering instabilities were observed in all cuprate families. However, it has proven
difficult to distinguish between unidirectional (stripes) and bidirectional (checkerboard)
charge order in yttrium- and bismuth-based materials. We used resonant x-ray scattering
to measure the two-dimensional structure factor in the superconductor YBa2Cu3O6+y

in reciprocal space. Our data reveal the presence of charge stripe order (i.e., locally
unidirectional density waves), which may represent the true microscopic nature of charge
modulation in cuprates. At the same time, we find that the well-established competition
between charge order and superconductivity is stronger for charge correlations across
the stripes than along them, which provides additional evidence for the intrinsic
unidirectional nature of the charge order.

R
ecent studies of Y-based copper oxides have
highlighted the importance of a charge-
ordered electronic ground state, also termed
a charge density wave (CDW), for the phe-
nomenology of high-temperature super-

conductors (1–14). Experiments on the family of
YBa2Cu3O6+y (YBCO) compounds have yielded a
wealth of experimental results that have enabled
advancements in our understanding of CDW in-
stabilities and their interplaywith superconductivity
(9–11, 15–22).

YBCO is a layered copper oxide–basedmaterial
in which hole doping is controlled by the oxygen
stoichiometry in the chain layer, characterized by
uniaxial CuO chains running along the crystallo-
graphic b axis. In addition to ordering within the
chain layer—attained via the periodic alterna-
tion of fully oxygenated and fully depleted CuO
chains—recent experiments have extensively
shown the presence of charge ordering in the CuO2

planes, with an incommensurate wave vector
Q ≈ 0.31 reciprocal lattice units (23), corresponding
to a period of approximately three unit cells in real
space (9–11). Although the stripy nature of La-
based cuprates is long established (1–3), the local
symmetry of the CDW in YBCO has not yet been
resolved. Both charge stripes (in the presence of
90° rotated domains) and a checkerboard pattern
are consistent with the globally bidirectional
structure of the CDW, which is characterized by
wave vectors along both the a and b axes, atQa ≈
(0.31, 0) andQb≈ (0, 0.31), respectively (10, 11,24–26).
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This leaves open the fundamental question of
whether stripes are the underlying charge in-
stability in thewhole class of hole-doped cuprates.
We used resonant x-ray scattering (RXS) to

study the local density correlations of the charge-
ordered state and the interaction of this state with
superconductivity (SC) in underdoped YBCO. The
RXS technique, which is now at full maturity, rep-
resents a unique combination of diffraction (to
probe reciprocal space) and resonant absorption
(allowing element specificity and therefore site
selectivity). RXS directly measures the structure
factor S(Qx, Qy), where Qx and Qy represent the
momenta along the reciprocal axes H and K, re-
spectively. The structure factor is linked to the
density-density correlation function and there-
fore to the CDW order parameter in momentum
space (27). To reconstruct the two-dimensional
(2D) structure factor with high resolution, we used
a specifically devisedRXS probing schemewhereby
a charge-ordering peak is sliced along different di-
rections in the (Qx,Qy) plane, parameterized by the
azimuthal anglea (Fig. 1). The resulting 2Dshapeof
theCDWpeaks rules out checkerboard order and is
instead consistent with a stripy nature of charge
modulations in YBCO (28). We carried out RXS

measurements in the vicinity of the CDW wave
vectorsQa ≈ (0.31, 0) andQb ≈ (0, 0.31) for three
detwinned, oxygen-ordered YBCO samples: YBa2-
Cu3O6.51 (Y651, with hole doping p ≈ 0.10), YBa2-
Cu3O6.67 (Y667, p≈ 0.12), and YBa2Cu3O6.75 (Y675,
p ≈ 0.13).
In our experimental scheme, the CDW peaks

are scanned in a radial geometry via control of
the azimuthal angle a (29) (Fig. 1A). At the Cu-L3
edge, the measured signal is mainly sensitive to
periodic variations in the Cu-2p→ 3d transition
energy (30, 31), which is a scalar quantity, even
though the detailed contribution of a pure charge
modulation versus ionic displacements to the RXS
signal cannot be decoupled (32). In addition, the
poor coherence of the CDW across the CuO2

planes (11, 24, 26) qualifies this electronic ordering
as a 2D phenomenon, thus motivating our focus
on the structure factor in the (Qx,Qy) plane. Rep-
resentative scans of the CDW peak for different a
values and at the superconducting critical temper-
ature T ≈ Tc are shown in the insets to Fig. 1A, for
the Qb and Qa CDW peaks of a Y667 sample. A
change in the peak half width at half maximum
(HWHM) DQ between a = 0° and a = 90° is al-
ready apparent but is even better visualized in

the color map of Fig. 1B, which shows the se-
quence of Q-scans versus azimuthal angle and
the corresponding variation of DQ for Qb in the
range a = –90° to 90°. This same procedure is
applied to all three YBCO doping levels, for both
the Qa and Qb CDW peaks; polar plots of DQ
versus a are shown in Fig. 1, C to E, for Y651,
Y667, and Y675, respectively. With the aid of the
ellipse fits to the CDW profiles (continuous lines),
four key aspects of these data stand out: (i) All
peaks show a clear anisotropy between the two
perpendicular directions a = 0° and a = 90°; (ii)
for each doping, the Qa and Qb peaks have dif-
ferent shapes, and in the case of Y651 and Y667
this is more evident as the peaks are elongated
along two different directions; (iii) the departure
from an isotropic case, quantified by the elonga-
tion of the CDW ellipses, increases toward the
underdoped regime and is opposite to the evo-
lution of orthorhombicity, which is instead max-
imized at optimal doping [see (27) and fig. S4 for a
more detailed discussion]; and (iv) the peak elon-
gation at Qa and Qb, evolving from biaxial (Y651
and Y667) to uniaxial (Y675), is inconsistent with
the doping independence of the uniaxial symmetry
of the CuO chain layer, which rules out the
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Fig. 1. Charge order topology in momentum space. (A) Schematic repre-
sentation of the momentum structure of charge modulations in YBCO. Left
inset: Selected momentum scans of the CDW peak along the b axis at Qb =
(0, 0.31), for different azimuthal angles (a = 0°, 45°, 90°). Continuous lines
represent Lorentzian fits; horizontal bars denote the linewidth DQ (HWHM).
Right inset: Same as for the left inset, but for the CDW peak along the a axis at
Qa ≈ (0.31, 0). (B) Color map of a series of Q-scans (normalized to the peak

height) slicing the Qb peak between a = –90° and a = 90°; black bars represent
the linewidth DQ, which is largest at a = 0°. (C to E) Polar plots of DQ as a
function of the azimuthal angle a for Qa (red) and Qb (blue) in YBa2Cu3O6.51

(Y651), YBa2Cu3O6.67 (Y667), and YBa2Cu3O6.75 (Y675), respectively. Concen-
tric gray circles are spaced by 0.01 Å–1; continuous lines are fits to an elliptic
profile. Bottom right insets: CDW peaks represented as solid ellipses and
compared with their rotated versions (hollow ellipses) for each doping.
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possibility that the observedCDWpeak structure is
exclusively controlledby the crystal’s orthorhombic
structure [however, theuniaxial anisotropyobserved
for Y675 might reflect a more pronounced inter-
action between the Cu-O planes and chains in
this compound, possibly caused by the increase in
orthorhombicity upon hole doping (27)].
The observed 2D peak shape indicates that the

four-fold (C4) symmetry is broken at both the
macro- and nanoscale, which is consistent with
the emergence of a stripe-ordered state. In fact,
under C4 symmetry the electronic density would
be invariant under a 90° rotation in real space
(x → y, y → –x), which is equivalent to a 90°
rotation inmomentumspace (Qx→Qy,Qy→ –Qx).
Instead, the CDW structure factor S(Qx, Qy) is
clearly not invariant under such operation, as
shown in the insets of Fig. 1, C to E, which
compare the original S(Qx, Qy) factors to their
90° rotated versions S(Qy, –Qx). This finding dem-
onstrates an unambiguous breaking of global C4
symmetry in all investigated samples and might
elucidate the origin of the anisotropy observed in
the Nernst effect (20) and in optical birefringence
measurements (33).
The real-space representation of charge order

branches off into two possible scenarios: (i) a bi-
axial anisotropy, where both x- and y-elongated
domains (34) are present (Fig. 2, A and C); (ii) a
uniaxial anisotropy, where only y-elongated (or,
equivalently, x-elongated) domains are found
(Fig. 2, B and D). Note that these domains need

not necessarily lie in the same layer, but they
need to be present at the same time within the
bulk of the material (e.g., they can be present in
alternating layers while still leading to the same
momentumstructure). Themomentum-space rep-
resentation of the order parameter—and therefore
of the electronic density fluctuations—is shown in
the corresponding panels in Fig. 2, E to H, where
Sa(Q) (red ellipses) and Sb(Q) (blue ellipses) rep-
resent the structure factor associated to the charge
modulations along a and b, respectively. The
profile of a single structure-factor peak is the
result of two contributions: the underlying CDW
symmetry as well as its 2D correlation length,
which can also be anisotropic.
As a net result, the anisotropy of a single peak

in Q-space cannot be used to discriminate be-
tween different CDW symmetries. Instead, the
latter can be resolved by probing the 2D CDW
structure factor—that is, by comparing the CDW
peak shapes for Qa and Qb. Inspection of the
diagrams in Fig. 2, E toH, reveals a common trait
of checkerboard structures in momentum space,
in that the following conditions (Fig. 2, G and H)
must always hold by symmetry: DQa

x = DQb
x

and DQa
y = DQb

y . That is, the peak broadening
along a given direction must coincide for Da and
Db (see bottom of Fig. 2, E to H, for case-specific
conditions on the peak linewidths). Intuitively,
this follows from the fact that for the checker-
board case, the charge modulations along a and
b axes must be subject to the same correlation

lengths within each domain—irrespective of its
orientation—andmust therefore lead to an equiv-
alent peak broadening along the same direction
in reciprocal space, in contrast to our findings for
the CDW linewidths (27). From this symmetry
analysis, we can conclude that for both uniaxial
and biaxial anisotropy it is in principle possible
(35) to discriminate between a pure checkerboard
and a pure stripe charge order, even in the presence
of a distribution of canted domains (see tables
S1 to S3 for a complete classification). Ultimately,
the inequivalence of the peak broadening DQ
along different directions for all studied YBCO
samples, combined with the macroscopic C4 sym-
metry breaking, provides clear evidence for the uni-
directional (stripe) intrinsic nature of the charge
order (28).
Having established the underlying stripelike

character of charge modulations in the CuO2

planes, we turn to the temperature dependence
of the longitudinal and transverse correlation
lengths, respectively parallel and perpendicular
to the specific orderingwave vector. These can be
extracted by inverting the momentum HWHM
DQ, as illustrated in Fig. 3A. Longitudinal corre-
lations are then given by x|| = DQ||

–1, where DQ||

represents the momentum linewidth in the direc-
tion parallel to the ordering wave vector; trans-
verse correlations are given by x⊥ = DQ⊥

–1, where
DQ⊥ represents the momentum linewidth in the
direction perpendicular to the ordering wave
vector.

SCIENCE sciencemag.org 20 MARCH 2015 • VOL 347 ISSUE 6228 1337

Fig. 2. Domainmesostructure in real and reciprocal space. (A and B) Stripy
domains along a (red stripes) and b (blue stripes) in the presence of biaxial (A)
and uniaxial (B) anisotropic correlations. The domains are visualized in the
same layer, although a situation in which they are present in alternating layers
in a 90°-rotated arrangement is equally possible. (C and D) Checkerboard

domains in the presence of biaxial (C) and uniaxial (D) anisotropic correlations.
(E to H) Corresponding structure factors in reciprocal (Q) space. In case of the
simultaneous presence of both CDWcomponents (checkerboard), the imprinted
correlations must be equal for the density wave along a and b, thus imposing an
equivalent peak structure at Qa and Qb as seen in (G) and (H).
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We subsequently studied the temperature
dependence of x|| and x⊥ for both the Qa and
Qb ordering wave vectors (Fig. 3, B to F). We
observed a rise of correlation lengths below the
CDW onset near 150 K, followed by their sup-
pression below the SC transition temperature Tc;
this confirms the competition between these two
orders, in agreement with recent energy-
integrated as well as energy-resolved RXS studies
(10, 11, 24, 25, 30). However, the drop in the cor-
relation lengths below Tc (Dx) was in all instances
larger for the longitudinal correlations, or Dx|| >
Dx⊥. In particular, the discrepancy between Dx||
and Dx⊥, although small for Y675, was quite
substantial for the more underdoped Y667 and
Y651. This anisotropy provides additional evidence
for the unidirectional nature of the charge order-
ing and thus the breaking ofC4 symmetry, because
a bidirectional order would be expected to ex-
hibit an isotropic drop in correlation length
across Tc. The anisotropy has an opposite doping
trend from the crystal orthorhombicity, whose
associated anomalies across Tc increase with hole
doping [as revealed, for example, by lattice expan-
sivity measurements (27, 36)].
The inferred real-space representation of the

evolution across Tc is schematically illustrated in
Fig. 3, G and H, where nanodomains are used to
pictorially represent a charge-ordered state with
finite correlation lengths. We conclude that the
largest change occurs along the direction per-
pendicular to the stripes. This reflects the tenden-
cy of the SC order to gain strength as temperature
is lowered, primarily at the expense of longitudi-
nal CDW correlations; the implication is that the

mechanism responsible for the density fluctua-
tions across the periodically modulated stripes
might be themain one competingwith the Cooper
pairing process.
Our resultsmay explainmany commonaspects

between CDW physics in YBCO and the stripy
cuprates from the La-based family, such as ther-
moelectric transport (37, 38), strength of the or-
der parameter (39), out-of-equilibrium response
(40, 41), and energy-dependent RXS response
(30, 31). The nanoscopic nature of the stripe insta-
bility and the presence of both a- and b-oriented
domains also clarify why this broken symmetry
has been difficult to disentangle from a native
bidirectional order (10, 11, 42), therefore requiring
a tailored experimental scheme to resolve the 2D
CDW structure factor S(Qx, Qy). The pronounced
directionality in the competition between super-
conductivity and stripe order reveals the under-
lying interplay between particle-particle and
particle-hole pairing in high-temperature super-
conductors and provides insights for an ultimate
understanding of these materials.
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available) and CDW peaks
investigated. Continuous lines
are guides to the eye; double
arrows highlight the drop in
correlation lengths Dx|| and
Dx⊥ below Tc. (G and H)
Cartoons representing the
evolution of the stripy nano-
domains from above Tc (G) to
below Tc (H), illustrating how
longitudinal correlations
undergo a larger suppression
in the presence of supercon-
ducting order.
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HEAVY FERMIONS

Chirality density wave of the “hidden
order” phase in URu2Si2
H.-H. Kung,1* R. E. Baumbach,2† E. D. Bauer,2 V. K. Thorsmølle,1‡ W.-L. Zhang,1

K. Haule,1* J. A. Mydosh,3 G. Blumberg1,4*

A second-order phase transition in a physical system is associated with the emergence
of an “order parameter” and a spontaneous symmetry breaking. The heavy fermion
superconductor URu2Si2 has a “hidden order” (HO) phase below the temperature of
17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous.
Here we use polarization-resolved Raman spectroscopy to specify the symmetry of the
low-energy excitations above and below the HO transition. We determine that the HO
parameter breaks local vertical and diagonal reflection symmetries at the uranium sites,
resulting in crystal field states with distinct chiral properties, which order to a
commensurate chirality density wave ground state.

I
n solids, electrons occupying 5f orbitals often
have a partly itinerant and partly localized
character, which leads to a rich variety of
low-temperature phases, such as magnet-
ism and superconductivity (1). Generally, these

ordered states are characterized by the symmetry
they break, and an order parameter may be con-
structed to describe the state with reduced sym-
metry. In a solid, the order parameter reflects the
microscopic interactions among electrons that
lead to the phase transition. In materials con-
taining f-electrons, exchange interactions of the
lanthanide or actinide magnetic moments typi-
cally generate long-range antiferromagnetic or
ferromagnetic order at low temperatures, butmul-
tipolar ordering such as quadrupolar, octupolar,
and hexadecapolar is also possible (2).
One particularly interesting example is the

uranium-based intermetallic compound URu2Si2.
It displays a nonmagnetic second-order phase
transition into an electronically ordered state at
THO ¼ 17:5 K, and then becomes superconduct-

ing below 1.5 K (3, 4). Despite numerous theo-
retical proposals to explain the properties below
THO in the past 30 years (5–10), the symmetry
andmicroscopicmechanism for the order param-
eter remain ambiguous, hence the term “hidden
order” (HO) (11). In this ordered state, an energy
gap in both the spin and the charge response has
been reported (12–18). In addition, an in-gap col-
lective excitation at a commensurate wave vector
has been observed in neutron scattering exper-
iments (13, 14, 16). Recently, fourfold rotational
symmetry breaking under an in-plane magnetic
field (19) and a lattice distortion along the crys-
tallographic a axis (20) have been reported in
high-quality small crystals. However, the availa-
ble experimental works cannot yet conclusively
determine the symmetry of the order parameter
in the HO phase.
URu2Si2 crystallizes in a body-centered tetrag-

onal structure belonging to the D4h point group
(space groupno. 139 I4/mmm, Fig. 1A). Theunique-
ness of URu2Si2 is rooted in the coexistence of
the broad conduction bands, composedmostly of
Si-p and Ru-d electronic states, and more local-
ized U-5f orbitals, which are in a mixed-valent
configuration between tetravalent 5f2 and tri-
valent 5f3 (21). When the temperature is lowered
below ~70 K, the hybridization with the conduc-
tion band allows a small fraction of each U-5f
electron to participate in formation of a narrow
quasiparticle band at the Fermi level, whereas the
rest of the electron remains better described as
localized on the uranium site.

In the dominant atomic configuration, the
orbital angular momentum and spin of the two
quasi-localized U-5f electrons add up to total mo-
mentum 4ℏ, having ninefold degeneracy (6, 22).
In the crystal environment ofURu2Si2, these states
split into seven energy levels denoted by irreduc-
ible representations of the D4h group: five singlet
states 2A1g⊕A2g⊕B1g⊕B2g and two doublet states
2Eg . Each irreducible representation possesses dis-
tinct symmetry properties under operations such
as reflection, inversion, and rotation. For example,
the A1g states are invariant under all symmetry
operations of the D4h group, whereas the A2g

state changes sign under all diagonal and vertical
reflections, and thereby has eight nodes (Fig. 1A).
Most of the physical observables, such as density-
density and stress tensors, or one-particle spec-
tral functions, are symmetric under exchange of
x and y axis in tetragonal structure and therefore
are impervious to the A2g excitations, whereas
these A2g excitations can be probed by Raman
spectroscopy (23–28).
Raman scattering is an inelastic process that

promotes excitations of controlled symmetry de-
fined by the scattering geometries, namely, polar-
izations of the incident and scattered light (22, 23).
Polarization-resolvedRaman spectroscopy enables
separation of the spectra of excitations into dis-
tinct symmetry representations, such as A1g , A2g ,
B1g , B2g , and Eg in the D4h group, thereby classi-
fying the symmetry of the collective excitations
(22, 26). The temperature evolution of these exci-
tations across a phase transition provides an un-
ambiguous identificationof the broken symmetries;
furthermore, the photon field used by the Raman
probe is weak, which avoids introducing external
symmetry-breaking perturbations.
We use linearly and circularly polarized light

to acquire the temperature evolution of the Raman
response functions in all symmetry channels. In
Fig. 2, we plot the Raman susceptibility in the
A2g channel, where the most significant temper-
ature dependence was observed. The Raman sus-
ceptibility above THO can be described within a
low-energy minimal model suggested in (6) (illus-
trated in Fig. 1B) that contains two singlet states
of A2g and A1g symmetries, split by an energy w0,
and a conduction band of predominantly A1g sym-
metry. In the following, we denote the singlet
states of A2g and A1g symmetries by |0〉 and |1〉;
the conduction band is labeled jCB〉.
At high temperatures, the Raman spectra ex-

hibit a Drude-like line shape, which in (25) was
attributed to quasi-elastic scattering. The maxi-
mum in the Raman response function decreases
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Materials and Methods

Sample characterization. This investigation was performed on three detwinned, oxygen-

ordered underdoped YBa2Cu3O6+y single crystals: (i) y = 0.51, p≃ 0.10, Tc = 57K, Ortho II

oxygen-ordered, hereafter labeled Y651; (ii) y=0.67, p≃ 0.12, Tc=65K, Ortho VIII oxygen-

ordered, hereafter labeled Y667; (iii) y=0.75, p≃ 0.13, Tc =70K, Ortho III oxygen-ordered,

hereafter labeled Y675. The in-plane lattice constants, which in turn determine the degree of or-

thorhombicity, are: (i) a≃3.8362Å and b≃3.8740Å in Y651; (ii) a≃3.8257Å and b≃3.8814Å

in Y667; and (iii) a ≃ 3.825Å and b ≃ 3.885Å in Y675. The superconducting critical tem-

perature Tc was determined from magnetic susceptibility measurements. The in-plane lattice

constants have been measured using XRD in Y651 and Y667, and are taken from Ref. 44 for

Y675. Details on the sample growth and the Tc-to-doping correspondence can be found in

Ref. 45.

Resonant soft X-ray scattering. Resonant x-ray scattering (RXS) is a coherent probe of fluc-

tuations in those physical quantities (X) that are directly or indirectly coupled to light, and is

therefore proportional to the Fourier transform of the correlation function of δX , i.e.:

IRXS(Q) ∝
∫

dre−iQ·r
∫

dr′ ⟨δX(r′)δX(r′ + r)⟩ = ⟨δX(−Q)δX(Q)⟩ , (S1)

where CX(r) =
∫
dr′ ⟨δX(r′)δX(r′ + r)⟩ represents the correlation function of δX .

Charge ordering is manifested through variations in different physical quantities, such as the

ionic displacements (X = δR, in this case X is a vector operator), the local valence (X = p),

or the energy shifts of the resonant transition (X = ∆E). The sensitivity of the experimental

signal to these fluctuating quantities is material-dependent: in the cuprates it has been shown

that the resonant scattering is predominantly controlled by variations in the energy shifts (i.e.,

a scalar field) [30,31], whereas in a different material, e.g. IrTe2, the RXS signal (at the Te-M
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absorption edge) was shown to be primarily associated to a combination of valence modulations

and atomic displacements [46]. In presence of valence modulations or energy shifts (i.e., scalar

operators), the fluctuating quantity is proportional to modulations in the electronic density ρ,

i.e. δX ∝ δρ, which leads to:

IRXS(Q) ∝ ⟨δρ(−Q)δρ(Q)⟩ = ⟨δρ∗(Q)δρ(Q)⟩ = S(Q), (S2)

where the second equality follows from the fact that the density operator is a real function, and

S(Q) is termed the static structure factor.

For this work, RXS measurements were performed on a 4-circle diffractometer in a 10−10 mbar

ultra-high-vacuum chamber, with a photon flux around 5 · 1012 photons/s and ∆E
E

∼2 · 10−4 en-

ergy resolution. In addition, fully polarized incoming light is used, with two available configu-

rations: σ (polarization vector perpendicular to the scattering plane) or π (polarization vector in

the scattering plane). In order to maximize the charge order signal, the series of measurements

as a function of the azimuthal angle α were performed at the peak energy of the Cu-L3 edge

(hν = 931.5 eV, see Fig. S1), at a detector angle θdet = 170◦, and at a temperature near the su-

perconducting transition Tc. All RXS scans were measured with a multi-channel-plate detector

with an angular resolution ∆θ ∼ 0.2◦, corresponding to an equivalent momentum resolution

∆Q ∼ 0.0023Å
−1 at hν=931.5 eV.

One should note that the spectrometer integrates the energy of scattered photons; however,

since inelastic process are incoherent in nature, the only portion of the spectrum which carries

the information on the momentum structure of the electronic density is the elastic (zero-loss)

line. Since the inelastic contributions, albeit strong at or near resonance, do not have a sharp

structure in momentum space, the momentum structure of the CDW peaks as observed with an

energy-integrated spectrometer is still predominantly determined by the elastic processes, and

therefore it is representative of the static electronic modulations in Fourier space. This is also
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confirmed by the close agreement between the CDW momentum linewidth previously measured

in the energy-resolved (RIXS) and energy-integrated (RXS) mode (see Fig. 4 in Ref. 10).

Supplementary Text

Azimuthal scans and experimental geometry. The azimuthal angle α is defined as the angle

between the direction of the RXS scan in momentum space and the crystallographic a axis,

or equivalently its reciprocal axis H . This configuration is illustrated in Fig. S2A, which also

highlights the cuts in momentum space (for different α values), at the charge-density-wave

(CDW) ordering wavevectors studied here, namely Qa =(0.31, 0, 1.5) and Qb =(0, 0.31, 1.5).

The value of L = 1.5 is chosen to maximize the CDW intensity [10]. However, as studied in

detail in recent work [11,24,26], the dependence of the CDW ordering peak on the out-of-plane

wavevector component L is very weak, a signature of the two-dimensional nature of the charge

order. For this reason, only the planar momentum structure of the CDW order parameter is

studied here, and we will henceforth refer exclusively to the in-plane projection of the CDW

peaks, and use the notation Qa=(0.31, 0) and Qb=(0, 0.31).

In order to extract a proper profiling of the CDW peak, it is important that each Q-scan

cuts through the CDW peak maximum. To ensure that this condition is met for each azimuthal

angle α, angular optimization perpendicular to the Q-scan direction was performed by scanning

through the peak as a function of the transverse angle χ (see lower-left inset of Fig. S2A). By

finding the χ angle maximizing the CDW signal, we have been able to cut precisely through the

peak maximum for every azimuthal position.

In a RXS measurement, the angle-to-momentum conversion is encoded in the equations:

Q(θdet, hν) =
4π

cν
sin

(
θdet
2

)
,

Q∥(θdet, θsample, hν) =
4π

cν
sin

(
θdet
2

)
cos (π − θdet + θsample) , (S3)
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where Q is the wavevector magnitude, Q∥ is its projection on the sample surface (a− b plane),

while θdet is the detector angle, θsample is the sample angular position (see schematics of the

probing geometry in Fig. 2C), while ν is the photon frequency. For the charge ordering peak,

the angular values are the following: θdet=170◦, θsample=32.5◦.

The resolution of the RXS diffractometer is evaluated by measuring the Bragg reflection

(0, 1, 3) at high photon energy (hν=2230 eV). By scanning the detector arm across the Bragg

reflection – whose intrinsic broadening is much smaller than the instrumental resolution and

therefore represents a δ-like signal – we estimate the angular resolution to be ∆θdet ∼ 0.2◦ (see

lower part of Fig. S2B). In order to estimate the momentum resolution, we have converted the

angular resolution scan (see again bottom part of Fig. S2B) into the surface projected wavevec-

tor and then evaluated ∆Q∥ using Eqs. S3 as follows:

∆Q∥ = Q∥ (θdet +∆θdet/2, θsample, hν)−Q∥ (θdet −∆θdet/2, θsample, hν)

= Q∥ (170
◦ + 0.1◦, 32.5◦, 930.5eV )−Q∥ (170

◦ − 0.1◦, 32.5◦, 930.5eV )

=
4π

cν
[sin (85.05◦) cos (180− 170.1 + 32.5◦)− sin (84.95◦) cos (180− 169.9 + 32.5◦)]

= 0.694668− 0.692344 ∼ 0.0023Å
−1
. (S4)

The value obtained amounts to approximately the 5% of the average full-width-at-half-maximum

for the charge order peak (which is of the order of 0.04−0.05Å
−1). Since the two contributions

add in quadrature, if we use the term ∆Qnative to denote the intrinsic contribution as opposed

to the one from resolution, ∆Qres, then we have for the measured linewidths that ∆Q2
exp =

∆Q2
native + ∆Q2

res. Since ∆Qres ∼ 0.05 ·∆Qnative, we obtain that ∆Qnative=0.9987 ·∆Qexp,

which shows that approximately the 99.8% of the observed peak broadening (see again Fig.1 of

the main text) represents intrinsic sample properties.

Data analysis methodology. RXS scans have been analyzed by means of a least-square non-
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linear regression analysis, with fitting function defined as the sum of a Lorentzian peak and a

cubic background polynomial function B:

IRXS =
A(

Q−Q∗

∆Q

)2

+ 1

+B(Q)

B(Q) = a0 + a1 Q+ a2 Q
2 + a3 Q

3, (S5)

where Q∗ is the peak position, A is the amplitude and ∆Q is the half-width-at-half-maximum.

All momentum scans were measured around the ordering wavevector using two light polar-

izations, vertical (σ) and horizontal (π). A preliminary analysis has shown that the linewidths do

not depend on the light polarization, consistently with the fact that the linewidth is an intrinsic

property of the system (related to correlation lengths, as will be discussed later) and therefore

does not vary upon changing an external parameter, such as light polarization. In order to pro-

vide a more precise quantitative estimate of the linewidth ∆Q with a reduced statistical error,

this parameter has been subsequently constrained to be the same during least-squares fitting of

the σ- and π-polarized scans. An example of the fitting analysis is provided in Fig. S3.

Stripe order with anisotropic correlations. As anticipated in the Materials and Methods

section, in our case the RXS observable is proportional to the static structure factor S(Q):

IRXS(Q) ∝ S(Q) =
⟨
|δρ(Q)|2

⟩
. (S6)

Here we focus on how a rotational symmetry breaking in real space – a tell-tale of a stripe-

like charge-ordered state – can be equivalently detected by looking at the structure of density

modulations in reciprocal space. Whenever C4 symmetry is preserved, the electronic density

fluctuations δρ must be invariant under a 90◦ rotation in real space (defined through the trans-

formations x → y and y → −x), or δρ(x, y) = δρ(y,−x). This can be readily translated in
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momentum space by taking the Fourier transform of δρ(x, y), which yields:

δρ(Qx, Qy) =

∫
dx dy e−i(Qxx+Qyy)δρ(x, y)

=

∫
dx dy e−i(Qxx+Qyy)δρ(y,−x)

=

∫
dx′ dy′ e−i(−Qxy′+Qyx′)δρ(x′, y′)

= δρ(Qy,−Qx), (S7)

which proves that the structure factor S(Q) has to likewise be invariant under a 90◦ rotation

in momentum space, or S(Qx, Qy) = S(Qy,−Qx). We then apply this procedure to the full

2D momentum structure of the CDW structure factor as measured using RXS (see Fig. 1 in the

main text).

The resulting peak structure is readily shown to violate C4 symmetry, as illustrated in the

three panels of Fig. S4A (reproduced from Fig. 1 of the main text). The extent of the rotational

symmetry breaking is here quantified via a C4 symmetry breaking parameter ∆C4 , defined as

∆C4 =
[
S(Qa) ∪ S̃(Qb)− S(Qa) ∩ S̃(Qb)

]
/
[
S(Qa) ∪ S̃(Qb)

]
, or equivalently as the area of

the union of the two CDW peaks (one of which rotated) S(Qa) ∪ S̃(Qb) minus their overlap

area S(Qa) ∩ S̃(Qb), divided by their union. The doping dependence of ∆C4 is then shown in

Fig. S4B. On the same plot, we report the values of the peak anisotropy γa,b for both the Qa and

Qb CDW peaks, as derived by taking the ratio between the peak width along the parallel and

perpendicular direction with respect to the ordering wavevector, or γ=∆Q∥/∆Q⊥. A value of

γ=1 yields isotropic peaks, while the larger the deviation from 1, the more anisotropic the peak

is (in one or the other direction). Interestingly, for Y651 and Y667, both γa and γb are smaller

than 1, corresponding to CDW peak structures elongated differently between the two directions

in reciprocal space. On the other hand, in Y675 we find that γa > 1, γb < 1, corresponding to

having Qa and Qb elongated along the same direction (see again Fig. S4A). Herefater we will

use the denomination biaxial anisotropy for the case of Y651 and Y667, and uniaxial anisotropy
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for the case of Y675 (see more below on uni vs. biaxial).

More detailed doping-, azimuthal angle-, and temperature-dependent results on peak widths

and correlation lengths are presented in the next two sections.

Azimuthal-dependent experimental data and parameters. The two-dimensional structure

factor near the ordering wavevectors Qa and Qb is well-approximated by a two-dimensional

Lorentzian function defined as follows:

I2DLor (Qx, Qy) =
A(

Qx −Q∗
x

∆Qx

)2

+

(
Qy −Q∗

y

∆Qy

)2

+ 1

=
A(

Q′
x

∆Qx

)2

+

(
Q′

y

∆Qy

)2

+ 1

, (S8)

where Q∗ = (Q∗
x, Q

∗
y) is the CDW wavevector, ∆Qx,y are the half-widths-at-half-maximum

(equal to the inverse correlation lengths) along x and y, respectively, while in the last equality

the reduced coordinate Q′ = Q − Q∗ was used. By parametrizing Q′ in polar coordinates as

(Q′
x, Q

′
y) = Q′(cosα, sinα), we can subsequently study the directional dependence of the RXS

intensity from Eq. S8, where the direction in reciprocal space is controlled by the angle α:

I2DLor (Q,α) =
A

Q′2

(
cos2α

∆Q2
x

+
sin2α

∆Q2
y

)
+ 1

=
A

Q′2

∆Q2
α

+ 1

. (S9)

Eq. S9 is used to fit the azimuthal series of RXS scans, which allows extracting the experimental

α-dependent linewidths ∆Qα (error bars are computed from a least-squares fitting analysis),

shown in Fig. S5. The same equation also allows reformulating ∆Qα as a function of the two

independent parameters ∆Qx and ∆Qy, which correspond to the linewidth at α= 0◦ and 90◦

degrees, respectively:

∆Qα =

(
cos2α

∆Q2
x

+
sin2α

∆Q2
y

)−1

. (S10)

This last formula is used to fit the α-dependent linewidths displayed in Fig. S5; the correspond-

ing fit profiles are overlaid as continuous lines. The values of ∆Qx (∆Qy) are reported beside
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the horizontal (vertical) bars in the top-right insets, which also define the peak shape (full ellip-

soid) and corresponding Qx/Qy anisotropy.

From the values of ∆Qα we can derive the α-dependent correlation lengths upon simple

inversion: ξα = ∆Q−1
α . The corresponding data points are plotted in Fig. S6. Here we also

introduce longitudinal (ξ∥) and transverse (ξ⊥) correlations, representing the correlation lengths

along the two axes that are respectively parallel and perpendicular to the specific wavevector.

Analysis and categorization of possible domain structures. A more detailed study of the

native anisotropy of the peak shape and consequently of the correlation lengths, in relation

to possible CDW domain structures, is also important in revealing the stripy nature of charge

ordering in YBCO. Such analysis relies on a few preliminary observations:

• The x-ray beam spot size (d∼500µm) is much larger than the average correlation length

(ξ ∼ 40 − 60Å), hence variations in the latter with the azimuthal angle α cannot be

attributed to the (minimal) motion of the beam spot on the probed region of the sample.

• The shortest and longest correlations always occur at either α = 0 (corresponding to

a direction parallel to the a axis) or α = 90 (parallel to the b axis) and therefore rule

out the influence of extrinsic effects related to the probing geometry in determining the

α-dependence of the correlation lengths – which would not preferentially select a high-

symmetry direction, and would rather cause the signal to be minimized or maximized at

a random angular position.

• The different variation of ξ with azimuthal angle between Y675 and the other two samples

(see again Fig. S6) also excludes any systematic effect to the probing geometry.

Based on the results shown in Fig. S6, anisotropic correlations are confirmed to be present

in all YBCO samples examined. In general, we note how correlation lengths increase with
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increasing doping, whereas the type of anisotropy evolves from being biaxial for p < 0.12 to

being uniaxial for p>0.12. In order to establish a link to the domain meso-structure and show

that the experimentally-found peak profiles are incompatible with microscopic bidirectional

(checkerboard) order, we define the correlation lengths along the x and y (equivalently H and

K) directions as ξa,bx and ξa,by , respectively (the superscript refers to the peak at Qa or Qb). The

latter quantities are related to the longitudinal and transverse correlations via the relations:

ξa∥ = ξax ξa⊥ = ξay

ξb∥ = ξby ξb⊥ = ξbx (S11)

Therefore, for domains with wavevector Qa=(0.31, 0) [Qb=(0, 0.31)], ξ∥ and ξ⊥ are evaluated

at α=0◦ [90◦] and α=90◦ [180◦] respectively. For all the investigated charge ordering peaks,

we find that ξx ̸= ξy. Whenever ξx > ξy (ξy > ξx), we will talk of x-oriented (y-oriented)

domains, and we will similarly say that the anisotropy is along x (y). Since we are dealing

with local, not global correlations, two situations may arise: (i) a biaxial anisotropy, where

both x- and y-oriented domains are present; (ii) a uniaxial anisotropy, where only x-oriented

(or y-oriented) are found. Case (ii) would effectively correspond to a global, macroscopic

anisotropy. These two possibilities are pictorially illustrated in Figs. S7A-D. In particular, the

uniaxial anisotropy shown in Figs. S7B,D assumes the presence of y-oriented domains. Note

that these domains need not necessarily lie in the very same layer, but they need to be present

at the same time within the bulk of the material (i.e., they can be present in alternating layer,

for instance). The momentum-space representation of the order parameter – and therefore of

the electronic density fluctuations is shown in the corresponding panels in Fig. S7E-H. Here

⟨ρa · ρa(r)⟩ (red stripes) and ⟨ρb · ρb(r)⟩ (blue stripes) represent the density-density correlation

functions for charge modulations along a and b, respectively. The corresponding structure fac-

tors in momentum space Sa(Q) and Sb(Q) are represented as ellipsoids to reflect the presence
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of anisotropic correlations.

By inspecting the diagrams in Figs. S7E-H, one can recognize a common trait of checker-

board structures in momentum space, in that the following conditions have to be always verified

by symmetry:

ξax = ξbx

ξay = ξby, (S12)

i.e., the correlation lengths along a given direction have to coincide for the two structure factors

Sa(Q) and Sb(Q). At the bottom-left corner of the various diagrams we also report the condi-

tions that apply to the correlation lengths in the various cases presented here (see also Table S1).

From this theoretical analysis, we can conclude that for both uniaxial and biaxial anisotropy it

is in principle possible to discriminate between a pure checkerboard and a pure stripy order,

unless ξax = ξbx, in which case the patterns shown in Figs. S7F and H become indistinguishable.

Even though the uni- vs bi-directional character can be assessed regardless of the character of

the anisotropy, the condition of biaxial anisotropy more intuitively discriminates between stripe

and checkerboard charge order, as a consequence of a simple fact: for stripy nanodomains,

the direction of the intra-domain wavevector can be locked to the direction of anisotropy – the

two can be parallel (as in Fig. S7A) or perpendicular (not shown). Such configuration cannot

be realized when the underlying order is checkerboard, since each single domain possesses

both order parameters and therefore two wavevectors; this condition forbids by construction

any locking to the axis of anisotropy. The case of domains which are oriented obliquely with

respect to the crystallographic axes, but still giving rise to ellipsoidal structures in momentum

space, can be equivalently treated by redefining the principal axes (x′, y′) for the domain struc-

ture. Ultimately, the same constraints that we derived for the correlation lengths along x and y

would apply for x′ and y′ and the peak structure at Sa(Q) and Sb(Q) should still bare the same
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reciprocity conditions expressed in Eqs. S12 (but now referred to the x′ and y′ axes). This case

is still not verified experimentally, and therefore rules out the presence of checkerboard order

even in the more general case of charge order domains with different orientations.

The comparison between the conditions laid out in Table S1 (second column) and the val-

ues for the correlation lengths determined experimentally (fourth column in Table S2) directly

shows that the conditions for checkerboard order are violated for all YBCO samples – indicating

the presence of stripe order in the doping range surveyed in this study – and at the same time

allows classifying the type of charge order (see last column in Table S2). This classification

indicates that Y651 and Y667 exhibit a biaxial stripy character, while Y675 can be catego-

rized as having a uniaxial stripy character. This difference, as well as the fact that Y675 ef-

fectively displays a global anisotropy with charge order domains preferentially elongated along

a given direction, might relate to: (i) the crystal structure itself, with the increasing role of

the orthorhombicity for increasing hole doping (the orthorhombic ratio a/b increases mono-

tonically); (ii) the proximity of the chain order peak, which in Y675 (Ortho-III) is located at

Q= 0.33 r.l.u.. Both aspects might lead to a stronger influence of the orthorhombicity and its

intrinsically anisotropic, C4-symmetry-broken structure onto the correlations and the domain

structure in the CuO2 planes.

Domain canting and its effect on the charge order structure in reciprocal space. So far the

charge order has been assumed to be strictly on-axis, i.e. a modulation of the electronic density

with crests (and valleys) parallel to the a or b axis for the Qb and Qa component, respectively.

The existence of domains with slightly canted density modulations cannot be a priori ruled out,

hence we here analyze its effect on the momentum structure of charge order and its relationship

to the peak shapes discussed in the previous section and their link to the inner structure of charge

order (checkerboard vs. stripes). Figure S8A and S8B show the difference between on-axis and
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canted domains (with canting angle θc=10◦ in Figure S8B).

Subsequently, we simulate the effect of a distribution of canted domains on the structure

factor S (Qx, Qx). Such distribution is Gaussian and centered about θc = 0◦ (see Fig. S8C,

angular spread is σθ=10◦); if otherwise, the charge order peaks would be displaced away from

the reciprocal H and K axes, at variance with our experimental observations. Figure S8D shows

the structure factor corresponding to a biaxial checkerboard structure with peak widths ∆Qa
x=

∆Qa
y = ∆Qb

x = ∆Qb
y ≃ 0.033 r.l.u. (see Fig. S8K for a graphical definition), in the absence

of canted domains. The effect of a distribution like that of Fig. S8C is showcased in Fig. S8E,

while Fig. S8F shows a simple (no canting) biaxial stripe scenario with ∆Qa
x =∆Qb

y = 0.033

and ∆Qb
x =∆Qb

y = 0.066 r.l.u. (Figs S8G-I show the same comparison for the case of unixial

order, which also implies anisotropic correlation lengths and peak shape). The effect of the

canting angle distribution is immediately evident in that it broadens the original charge order

peaks in the transverse direction, as expected since canting displaces the peak along a circle

centered at Q= 0 and with radius Q=QCO. Also, for the same reason, the peaks tend to get

curved at their edges, an effect which becomes particularly evident when σθ&5◦.

A qualitative analysis reveals a striking similarity between panels E and F, thus raising

the possibility that, contrary to the conclusions reached in the previous section, the pattern

shown in Figs. S8 might in fact be compatible with checkerboard, when a distribution of canted

domains is present. However, a quantitative analysis of the experimental peak widths shows that

a checkerboard scenario has to be still ruled out. In the following, we consider the more general

checkerboard case, for which these relations must hold (see also Supplementary Table S1):

∆Qa
x,i=∆Qb

x,i ≶ ∆Qb
y,i=∆Qa

y,i (S13)

The subscript i means intrinsic, as the above relations refer to the native broadening of the

charge order peaks resulting from finite spatial correlations. As mentioned earlier, the effect of
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a distribution of canted domains will change the transverse width. The momentum broadening

associated to the distribution of canted domains (∆Qc), in the case of small angular spreads, can

be approximated as ∆Qc=2QCO · σθ which, for σθ =5◦=0.087 rad, gives ∆Qc≃ 0.054 r.l.u..

The analysis of Fig. S8J demonstrates that the extra broadening adds up in quadrature to the

intrinsic one (0.0682∼ 0.0542 + 0.0332), by comparing the FWHM of the CO peaks along the

transverse direction (see inset) before (0.033 r.l.u.) and after (0.068 r.l.u.) the inclusion of a

domain distribution with σθ=5◦.

As a result, while the experimental longitudinal widths will remain unaffected:

∆Qa
x,e=∆Qa

x,i ∆Qb
y,e=∆Qb

y,i (S14)

the transverse widths will increase, and experimentally one would observe:

∆Qa
y,e =

√(
∆Qa

y,i

)2
+ (∆Qc)

2 =

√(
∆Qb

y,i

)2
+ (∆Qc)

2 =

√(
∆Qb

y,e

)2
+ (∆Qc)

2

∆Qb
x,e =

√(
∆Qb

x,i

)2
+ (∆Qc)

2 =

√(
∆Qa

x,i

)2
+ (∆Qc)

2 =

√(
∆Qa

x,e

)2
+ (∆Qc)

2 (S15)

where in the second (third) equality Eqs. S13 (Eqs. S14) have been used. By taking the square of

Eqs. S15 it directly follows that, in the case of checkerboard order in presence of a distribution

of canted domains centered about the crystallographic axes, the following equality must hold:

(
∆Qa

y,e

)2 − (∆Qb
y,e

)2
=
(
∆Qb

x,e

)2 − (∆Qa
x,e

)2 (S16)

The set of mathematical relations introduced so far has also been summarized in Fig. S8L.

In addition, Eq. S16 has been evaluated for the three YBCO samples, and the results are

reported in Supplementary Table S3, showing that such relation is always violated. This leads

to the conclusion that, even in the presence of a distribution of domains with canted charge

modulations, the checkerboard scenario remains incompatible with the experimental results.
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Doping- and temperature-dependent CDW peak asymmetry vs. YBCO orthorhombicity.

In this last section, we focus on a more detailed analysis of the CDW peak asymmetry. In this

case, the available experimental data allow extracting the longitudinal and transverse correlation

lengths for the YBCO dopings and CDW peaks reported in Fig. 3 of the main text. Here we ex-

tend such analysis to the extraction of the peak anisotropy defined as γ=∆Q∥/∆Q⊥ as a func-

tion of temperature, in a range where the peak widths can be extracted with reasonable precision

(T < 100K). The results are shown in Fig. S9A-C and suggest a non-monotonous temperature

dependence of γa,b, which is more evident in Y651 and Y667. In particular, the peak anisotropy

increases upon cooling down towards T >Tc, then is maximized around Tc, and eventually re-

covers below Tc, consistent with the pronounced directionality of the superconductivity-induced

suppression of CDW correlations (see again Fig. 3 in the main text).

The magnitude of the asymmetry, which is closely related to the degree of elongation of the

CDW peaks in momentum space (see again Fig. 1 in the main text), allows drawing important

considerations with respect to the role of orthorhombicity in our study. The following points

will clarify a few key aspects of our data that directly rule out the possibility that the observed

structures are solely driven by the structural symmetry breaking associated to the chain layer:

• In general, in presence of isotropic correlations (measured in number of unit cells) defined

on a square lattice, the two-dimensional structure factor is also isotropic. However, when

the underlying structure and its unit cell become orthorhombic, the peaks will develop

an elongation with an associated anisotropy γ equivalent to the orthorhombic ratio a/b

(or b/a), which is equal to a/b = 0.9902 (b/a = 1.0098) in Y651, a/b = 0.9856 (b/a =

1.0145) in Y667, and a/b = 0.9845 (b/a = 1.0157) in Y675. The experimental values

shown in Fig. S9A-C in almost all cases strongly deviate from the value found above for

the orthorhombic ratio, indicating a much larger anisotropy. Furthermore, the doping

dependence of the anisotropy, which switches from biaxial to uniaxial across p = 0.12,
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is also inconsistent with a behavior completely driven by the structural orthorhombicity

(we note again that our samples are fully detwinned).

• If we assume that the influence acted by the chain layer and its associated potential onto

the CuO2 plane is more complex and, e.g., involves native anisotropic correlations in the

CuO chain order, than one might wonder whether this alone could explain the observed

anisotropy in the peak profiles. If this was the case, then the CDW peak along a and

b should exhibit the very same elongation, since the chain layer breaks C4 in a unique

manner. In other words, the anisotropy measured at Qa and Qb must be the same within

such scenario, again at variance with the experimental data presented in Fig. S9A-C.

• The deviation of the peak anisotropy parameter γ from the isotropic case (γ=1) is largest

for the most underdoped sample, and is reduced for increasing hole doping (see Fig. S4B),

in stark contrast with the evolution of the crystal orthorhombicity which instead grows as

optimal doping is approached.

• The temperature evolution of the peak anisotropy shows an anomaly near the supercon-

ducting transition Tc. Such a behavior in principle can not be immediately deemed to

be incompatible with the evolution of the lattice parameters a and b, whose temperature-

dependent espansivity αa,b also shows a cusp near Tc [36]. However, the anomaly asso-

ciated to the crystal orthorhombicity [36] gets more and more pronounced for increasing

doping (with a maximum at optimal doping reflecting the complete oxygenation of the

chains), and is therefore inconsistent with our finding of a charge order peak anisotropy

that is more enhanced in the underdoped region, and weakens above p=0.12.

• In addition to these aspects, a recent study by Achkar et al. [47] directly showed that the

CDW correlations are to a large degree unaffected upon disordering the CuO chains, and

therefore are intrinsic to the CuO2 planes. This once again validates the scenario where
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the ordering mechanisms in the planes are largely insensitive to the phenomenology in

the chain layer, where the orthorhombicity originates from.

Finally, Figure S9D shows the C4 symmetry breaking parameter ∆C4 as a function of tem-

perature below 100 K, for Y651 and Y667 (in Y675 no T-dependent data for Qa are available,

and therefore ∆C4 cannot be evaluated). The amount of C4 symmetry breaking ranges around

0.2 for both doping levels, although both the error bars and the data scatter are larger for Y651,

due to the generally lower CDW peak intensity. In any case, we can conclude that ∆C4 does

not show a pronounced temperature dependence, which seems to suggest that while the overall

amplitude of density correlations in the CuO2 planes changes with temperature, their stripe-like

character does not instead change significantly.
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Figure S1: X-ray absorption at the Cu-L3 edge in Y675. Shown are the x-ray absorption
profiles measured in both total fluorescence yield (TFY) and total electron yield (TEY) mode,
for incoming vertical (σ) and horizontal (π) polarization. The arrow marks the photon energy of
the main transition involving planar Cu atoms (maximizing the CDW signal, see Refs. 10,30),
where all measurements were performed.

18



0.050-0.05

C
o

u
n

ts (a
rb

. u
n

its)

|Q||-(0,0.31,1.5)|  (2π/a)

(0,0.31,1.5)

0°

45°

α=90°

Y667
p ~0.12

CDW scans

10-1

Det. scan
Bragg peak
(0,1,3)

θdet - θ(0,1,3)  (degrees)

∆θdet = 0.2°

A B

H

K

α=0°

chain

Qa=(0.31,0,L)

Qb=(0,0.31,L)

-Qb

α=45°
α=90°

α=0°

α=45°α=135°

α=90°

-Qa

α=135°

90

180

270

α

0 H

K

χ

α=45°

χ

α=0°

k
out k

in

Detector

Sample

θ
det

θ
sample

θ
det

∆θ
det

∆Q
||

∆Q ||~0.0023 Å-1

~0.0027 r.l.u. 

180−θ
det

+θ
sample

k
out k

in

Q=k
in
-k

out

Q||

C

Figure S2: Azimuthal geometry and angular resolution. (A) Schematics of momentum-
resolved electronic density in YBCO systems, highlighting: (i) the chain-ordering feature (black
dot), which in detwinned samples is only located along the reciprocal H axis; (ii) plane-ordering
CDW peaks at ±Qa = (±0.31, 0) along H (red diffuse circles); (iii) plane-ordering CDW
peaks at ±Qb=(0,±0.31) along K (blue diffuse circles). The zero of the azimuthal angle (α)
scale defines a generic direction in reciprocal space which is parallel to the H axis (top-right
inset). Also shown are the Q-cuts for various values of α around the two CDW peaks Qa and
Qb. (B) The top part of the graph reproduces Fig. 1a from the main text, showing the RXS
scans (markers) across the CDW peak Qb = (0, 0.31) as a function of K, with Lorentzian fits
overlaid. The bottom part (red curve) shows a scan of the photodetector across the Bragg peak
QBragg = (0, 1, 3) as a function of detector angle θdet. The angular resolution, as obtained by
fitting the red curve with a Gaussian lineshape, is equal to ∆θdet = 0.2◦. (C) RXS probing
geometry highlighting how the surface-projected momentum resolution ∆Q∥ is derived starting
from the angular resolution ∆θdet.
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Figure S5: CDW peak linewidth vs. azimuthal angle. (A-C) Plots of the half-width-at-
half-maximum ∆Q of the CDW peak Qa = (0.31, 0, 1.5) as a function of azimuthal angle
α, for Y651, Y667, and Y675, respectively. (D-F) Same as (A-C), but for the CDW peak
Qb = (0, 0.31, 1.5). Experimental points (colored markers) are expressed in Å

−1 × 10−3. The
uncertainties (error bars) on the data points have been estimated from the fitting analysis of RXS
scans using standard procedures [48]. Continuous lines are fits to the ∆Q(α) data points using
Eq. S10, while shaded areas represent the 95% confidence bands, i.e. the range within which
the model fit covers a 95% probability of representing the true model, in the presence of the
reported uncertainties on ∆Q (indicated by error bars). The inset diagrams report the values of
∆Q along the reciprocal axes H and K, and illustrate the resulting peak shape in momentum
space.
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Figure S6: CDW correlation length vs. azimuthal angle. (A-C) Plots of the CDW correlation
length ξ for Qa=(0.31, 0, 1.5) as a function of azimuthal angle α, for Y651, Y667, and Y675,
respectively. (D-F) Same as (A-C), but for Qb = (0, 0.31, 1.5). Reported in each panel are the
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δ∆Q

∆Q
=
δξ
ξ

.

23



Anisotropic - biaxial Anisotropic - biaxial

Stripe

x

y

Qa

Qb

<ρb
.ρb

(r)>

<ρa
.ρa

(r)>

x

y

Qa

Qb

Qa

Qb

H

K

Qa-Qa

-Qb

Qb

ξx>ξy

ξx<ξy

Sa(Q)

Sb(Q)

H

K

Qa-Qa

-Qb

Qb

ξx=ξy=ξy=ξx

A C

E

Anisotropic - uniaxial

x

y Qa

Qb

H

K

Qa-Qa

-Qb

Qb

ξx<ξy

ξx<ξy

B

F G

Anisotropic - uniaxial

x

y Qa

Qb

Qa

Qb

H

K

Qa-Qa

-Qb

Qb

ξx=ξx<ξy=ξy

D

H

Checkerboard

R
e

a
l s

p
a

c
e

R
e

c
ip

ro
c
a

l s
p

a
c
e

Figure S7: Stripe and checkerboard charge order parameters in presence of anisotropy.
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tion lengths. (C,D) Checkerboard nanodomains in presence of biaxial (C) and uniaxial (D)
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In the case of uniaxial anisotropy (F,H), a stripe and checkerboard order can be distinguished in
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components, i.e. ξax ̸= ξbx, or ξay ̸= ξby. In the case of biaxial anisotropy (E,G), stripe order pos-
sesses an intra-domain wavevector which can be locked to the correlation length, whereas this
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Figure S8: Domains with canted modulations and their effect on the CDW structure factor.
(A,B) On- and off-axis (10◦ canting angle) checkerboard domain, respectively. (C) Distribution
of canted domains, used in subsequent simulations. (D-F) Simulation of the structure factor
S (Qx, Qy) for a biaxial checkerboard-like charge order purely on-axis (D), or with a Gaussian
distribution of canted domains having σ=10◦ (E); and (F) for biaxial on-axis stripe-like order.
(G-I) Same as (D-F), but for uniaxial order. (J) Broadening induced by a distribution of canted
domains with σ = 5◦, as seen via the linecut of S (Qx, Qy) as indicated in the inset. (K)
Definition of the peak widths for Qa (red) and Qb (blue), from the region highlighted in (H).
(L) Relations linking the experimental peak width ∆Qx/y,e to the intrinsic broadening ∆Qx/y,i

and to the contribution due to the canted domains (∆Qc) for the case of checkerboard order.
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Figure S9: CDW peak anisotropy and C4 symmetry breaking vs. temperature. (A-C)
Peak anisotropy γa = ∆Qa,∥/∆Qa,⊥ (blue markers) and γb = ∆Qb,∥/∆Qb,⊥ (red) for Y651,
Y667, and Y675, respectively. The uncertainties (error bars) on line width data points ∆Q
have been estimated from the fitting analysis of RXS scans using standard procedures [48], and
subsequently converted to uncertainties for the anisotropy γ using error propagation. Grey
dashed lines are guides-to-the-eye. (D) C4 symmetry breaking order parameter ∆C4 as a
function of temperature, for Y651 (red) and Y667 (light blue), respectively. Uncertainties
(error bars) on the values of ∆C4 have been estimated by taking the maximum margin af-
ter having evaluated ∆C4 at the extrema of the error range, i.e. for all combinations of:
{∆Qa,∥ ± δ∆Qa,∥ ; ∆Qa,⊥ ± δ∆Qa,⊥ ; ∆Qb,∥ ± δ∆Qb,∥ ; ∆Qb,⊥ ± δ∆Qb,⊥}.
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Supplementary Tables

Order type Conditions on correlations Conditions on peak width

Stripy biaxial ξax ≷ ξay ; ξbx ≶ ξby ∆Qa
x ≶ ∆Qa

y; ∆Qb
x ≷ ∆Qb

y

Stripy uniaxial ξax ≷ ξay ; ξbx ≷ ξby ∆Qa
x ≷ ∆Qa

y; ∆Qb
x ≷ ∆Qb

y

Checkerboard biaxial ξax=ξay =ξbx=ξby ∆Qa
x=∆Qa

y=∆Qb
x=∆Qb

y

Checkerboard uniaxial ξax=ξbx ≷ ξby=ξay ∆Qa
x=∆Qb

x ≶ ∆Qb
y=∆Qa

y

Table S1: Constraints on correlation lengths and peak elongations for checkerboard and
stripe orders. Reported in this table are the conditions that restrain the correlation lengths
between the two directions and charge order peaks based on general considerations.

Sample Doping Wavevector Correlations (Å) Order type

Y651 ∼0.10
Qa ξx=43(±7) > ξy=33(±1)

Stripy biaxial
Y651 Qb ξx=27(±1) < ξy=41(±2)

Y667 ∼0.12
Qa ξx=45(±2) > ξy=42(±2)

Stripy biaxial
Y667 Qb ξx=35(±1) < ξy=51(±3)

Y675 ∼0.13
Qa ξx=47(±4) < ξy=55(±4)

Stripy uniaxial
Y675 Qb ξx=38(±1) < ξy=54(±2)

Table S2: Charge order classification in underdoped YBCO compounds. Reported in this
table are the correlation lengths as extracted from the RXS data. Comparison with the momen-
tum structure of the order parameter allows classifying the different types of order (rightmost
column).
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Sample
(
∆Qa

y,e

)2 − (∆Qb
y,e

)2 (
∆Qb

x,e

)2 − (∆Qa
x,e

)2
Y651 32 (±25)× 10−5 Å

−2
77 (±13)× 10−5 Å

−2

Y667 18 (±9)× 10−5 Å
−2

36 (±9)× 10−5 Å
−2

Y675 −4 (±9)× 10−5 Å
−2

23 (±9)× 10−5 Å
−2

Table S3: Evaluation of condition for checkerboard order in the presence of canted do-
mains. In order for a checkerboard+canted domains scenario to be compatible with experimen-
tal data, the numbers on the second and third column must be the same. When these expressions
are evaluated and compared with the respective error bars, we find that the equality is violated
for all three YBCO compounds.
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