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Abstract. Angle-resolved photoemission spectroscopy (ARPES) is one of the most
direct methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a sample
illuminated with sufficiently high-energy radiation, one can gain information on both
the energy and momentum of the electrons propagating inside a material. This is
of vital importance in elucidating the connection between electronic, magnetic, and
chemical structure of solids, in particular for those complex systems which cannot be
appropriately described within the independent-particle picture. Among the various
classes of complex systems, of great interest are the transition metal oxides, which
have been at the center stage in condensed matter physics for the last four decades.
Following a general introduction to the topic, we will lay the theoretical basis needed
to understand the pivotal role of ARPES in the study of such systems. After a brief
overview on the state-of-the-art capabilities of the technique, we will review some
of the most interesting and relevant case studies of the novel physics revealed by
ARPES in 3d-, 4d- and 5d -based oxides.

1.1 Introduction

Since their original discovery, correlated oxides have been extensively studied
using a variety of experimental techniques and theoretical methods, thereby
attracting an ever-growing interest by the community. It was soon realized
that the low-energy electronic degrees of freedom were playing a key role in
determining many of their unconventional properties, with the concepts of
“correlations” and “many-body physics” gradually becoming part of the ev-
eryday dictionary of many condensed-matter physicists. It was only around
the mid 90’s that a series of considerable technological advancements, allowing
for unprecedentedly high momentum- and energy-resolutions, made ARPES
one of the prime techniques for the study of correlated materials. We will
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Fig. 1.1. (Color). Building blocks of correlated materials and related control pa-
rameters. Blue boxes indicate those elements exhibiting strongly localized physics
(U ≫ W ), due to the presence of localized 3d (transition metals) and 4f (rare earths)
orbitals. Correlated physics emerges when these species form oxide compounds, and
the localized d orbitals mix with the delocalized O 2p states. In this chapter we
will review: 3d -based materials, such as manganites, cobaltates, and cuprates, the
4d -based ruthenates and rhodates, and the 5d -based iridates. The phase diagrams
for the special cases of Cu-based (from Ref. 1) and Ru-based (from Ref. 2) oxides,
which exhibit unconventional superconductivity, are expanded in the bottom right
and left panels, respectively.

show, by discussing the required theoretical basis in conjunction with a few
selected case studies, how the experimental information directly accessible us-
ing ARPES provides a unique and rich perspective towards the understanding
of the electronic properties of these materials at the microscopic level.
The correlated materials treated here belong to the ample (and growing)
class of transition metals oxides (TMOs). Despite giving rise to a rich vari-
ety of distinctive unconventional phenomena, the systems we will discuss all
share the same basic structural elements: TM-O6 octahedral units, where a
central transition metal (TM) cation TMn+ is coordinated to 6 neighbouring
O2− anions, sitting at positions δi=(±a,±a,±a), a being the TM-O nearest
neighbour bond length. The remaining elements in the structure primarily
serve the purpose of completing the stoichiometry and also, in most cases, to
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help controlling certain material parameters (e.g. doping, bandwidth, struc-
ture, magnetism). The delicate interplay between the localized physics taking
place within these building blocks, and the delocalized behaviour emerging
when such local units are embedded in a crystalline matrix, is what makes
these systems so complex and fascinating.

We will discuss the emerging physics in this class of materials, as one goes
from the row of 3d to that of 5d transition metals. This is schematically illus-
trated in Fig. 1.1, where the relevant elements are highlighted (see caption).
The phenomenology of correlated oxides can be understood in terms of the
competition between charge fluctuation (favored by the O-2p electrons) and
charge localization (driven by the TM-d electrons). The peculiarity of 3d and
4f shells is that the radial part of the wave functions has an extension which
is small compared to typical interatomic distances, as opposed to the oxygen
2p orbitals which extend over many lattice sites. As a results, the localized
3d and 4f electrons are not well described within the independent particle
picture, where electrons are assumed to interact with the average (electronic)
charge density, which is hardly affected by the motion of a single electron. In
reality, for the tightly confined 3d and 4f electrons, the addition of an extra
electron in the same shell entails a large energy cost given by the strong in-
crease in Coulomb repulsion U. This is at the heart of what is referred to as
strongly-correlated electron behavior, and it underlies most of the spectacular
phenomena observed in these materials. As a result, all the relevant degrees
of freedom – charge, spin, orbital and lattice – are deeply entangled, and their
mutual interplay is what governs the low-energy physics.

Over time experimentalists have learned how to tune this delicate in-
terplay by means of selected control parameters – bandwidth, band filling,
and dimensionality. All of these parameters are primarily tuned chemically
(e.g. via the choice of the specific TM ion, or by carrier doping) but they
can also be controlled experimentally (e.g. by means of pressure, EM fields,
or in-situ doping). The resulting novel phenomena and materials include
Kondo physics and heavy fermion systems (found especially in – but not
limited to – 4f -based materials), Mott-Hubbard/charge-transfer insulators
(e.g. CuO, NiO, CoO, MnO), unconventional superconductivity (cuprates,
such as e.g. La2CuO4, and also Sr2RuO4), spin-charge ordering phenomena
(e.g. La2CoO4, La2NiO4, La1−xCaxMnO3), and colossal magnetoresistance
(La2−xSrxMn2O7). Remarkably, some of these phenomena can be found in
the very same phase diagram, as is the case of Cu- and Ru-oxides (see bottom-
right and bottom-left phase diagrams in Fig. 1.1, respectively).

To better elucidate the origin and nature of correlated behaviour, we will
first discuss one of the most fascinating manifestations of the novel, corre-
lated physics arising from the spatial extent of p- and d -orbitals: the Mott
insulator . In order to understand the origin of this concept, it is useful to
start from classical band theory. One of the fundamental paradigms of band
theory affirms that the nature of the electronic ground state in a single-band
material is entirely determined by the band filling, which is directly related to
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the number of electrons NUC in the unit cell: if NUC is odd (even), the sys-
tem must be metallic (insulating). For this reason, the discovery of insulating
TMOs having odd NUC came as a surprise. The breakdown of single-particle
physics, and consequently of band theory (where electrons are assumed to
interact only with the lattice ionic potential and the average electronic den-
sity), was originally suggested by Sir. Neville Mott [3]. This new category of
correlated insulators is the manifestation of the dominant role of on-site in-
teractions in 3d oxides: at half-filling (1 electron per site), the large on-site
Coulomb repulsion (parametrized by the Hubbard parameter U ) between the
strongly localized 3d electrons makes hopping processes unfavourable, thus
leading to charge localization and subsequent insulating behaviour, with a
gap in the electronic spectrum opening up at the chemical potential. When
the lowest occupied and the first unoccupied bands both have mainly TM-d
orbital character, as in Fig. 1.2(a), we use the term Mott insulator. The pres-
ence of a Mott gap, with its characteristic scale of the order of U, is therefore
a hallmark of correlated behaviour in these systems. The lowest electron re-
moval and addition states (bands) are respectively termed lower Hubbard band
(LHB) and upper Hubbard band (UHB). This is sketched in Fig. 1.2(a), where
a gap at the chemical potential is separating the LHB and UHB (both having
mainly 3d -character).
The stability of a Mott-Hubbard insulating ground state against a delocal-
ized metallic behavior lies in the fulfilment of the Mott criterion, i.e. U >W ,
which establishes the condition for the localizing energy scale (U ) to overcome
the delocalizing ones (the bandwidth W, proportional to intersite hopping).
This criterion is based on the prerequisite that the correlated d -states are the
lowest-lying ones, i.e. those closest to EF . While this is in most cases true, it
fails to hold for the late 3d transition metals [4, 5], where ϵ3d<ϵ2p instead, ϵ
being the orbital on-site energy (or the band center-of-mass in a delocalized
picture). In such cases we talk of charge-transfer insulators [4], the denomi-
nation following from the fact that the lowest-energy excitation involves the
transfer of one electron from the last occupied band, of O-2p character, onto
the first unoccupied band, of TM-3d character. This is depicted in Fig. 1.2(b),
where now the charge-transfer gap separates the 3d -derived UHB and the O
2p-derived valence band. A comprehensive classification can be found in Ref. 4.

The bandwidth W and Coulomb repulsion U are not the only relevant
energy scales in the field of correlated materials. More recently, a new class
of materials has appeared on the stage, that are based on the late 5d transi-
tion metals (osmium, iridium), and whose electronic states have to be treated
within a relativistic framework, due to the heavier nuclear mass. This results
in a new energy scale making its way into the problem: spin-orbit (SO) in-
teraction, whose strength will be indicated by ζSO. This new element in the
Hamiltonian, despite being a single-particle term (coming from the expansion
of the single-fermion Dirac Hamiltonian), strongly affects the balance gov-
erning the interplay between W and U, making the previously introduced
Mott criterion not sufficient. This results in the emergence of a new class of
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Fig. 1.2. (Color). Different types of correlated quantum states of matter discovered
in transition metal oxides. (a) when d -states are close to the Fermi Energy EF (i.e.,
they are the lowest-ionization states), the last half-filled d -band is split into a lower
and an upper Hubbard band by the action of U. Whenever U > W a gap opens
up at EF . (b) same as (a), but now the last occupied band has O-2p character,
since U is larger than the Cu-O charge-transfer energy ∆; the corresponding gap
is a charge-transfer gap. (c) the action of spin-orbit (SO) interaction splits the t2g
manifold into Jeff =3/2 and 1/2 submanifolds. The latter is higher in energy and
lies close to EF . Again, the action of U can open a Mott-like gap, but this hinges on
the previous SOI-induced splitting of the t2g band. Note: in panels (a,b) the dx2−y2

orbital, forming the LHB and UHB, lies higher in energy than dz2 as a consequence
of the tetragonal crystal field (octahedra elongated along c-axis) – The energy levels
would be inverted for compressed octahedra.

correlated quantum states of matter, the relativistic Mott insulator , in which
on-site Coulomb repulsion and spin-orbit interaction have to be treated on
equal footing. The idea behind the existence of such a state is sketched in
Fig. 1.2(c). To summarize, we have introduced three different classes of corre-
lated TMOs:

1. Mott-Hubbard insulators - Fig. 1.2(a).
2. Charge-transfer insulators - Fig. 1.2(b).
3. Relativistic Mott insulators - Fig. 1.2(c).

Please note that the 4d -based oxides have been left out of this overview, as the
presence of Mott physics in such systems is still debated, although they host
a variety of different many-body phenomena, including relativistic correlated
metallic behavior and unconventional superconductivity.
It is then clear how, as one goes down from 3d to 5d materials, U progressively
decreases whereas a new energy scale, spin-orbit coupling, gains importance
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and thus has to be accounted on equal footing. The evolution of U/W and the
interplay with SO from 3d to 5d will be the focus of this review. In the last
section of this chapter we will present a few selected examples which illustrate
the different flavors of correlated electrodynamics in various TMOs (cuprates,
manganites, cobaltates, ruthenates, rhodates, and iridates), and discuss the
role of ARPES for quantitative and qualitative estimates of correlation effects
in these systems.

1.2 The ARPES technique3

Photoelectron spectroscopy is a general term that refers to all those tech-
niques based on the application of the photoelectric effect originally observed
by Hertz [7] and later explained as a manifestation of the quantum nature of
light by Einstein [8], who recognized that when light is incident on a sam-
ple an electron can absorb a photon and escape from the material with a
maximum kinetic energy Ekin=hν−ϕ (where ν is the photon frequency and
ϕ, the material work function, is a measure of the potential barrier at the
surface that prevents the valence electrons from escaping, and is typically 4-
5 eV in metals). In the following, we will show how the photoelectric effect
also provides us with deep insights into the quantum description of the solid
state. In particular, we will give a general overview of angle-resolved pho-
toemission spectroscopy (ARPES), a highly advanced spectroscopic method
that allows the direct experimental study of the momentum-dependent elec-
tronic band structure of solids. For a further discussion of ARPES and other
spectroscopic techniques based on the detection of photoemitted electrons, we
refer the reader to the extensive literature available on the subject [1, 9–39].
As we will see in detail throughout the paper and in particular in Sec. 1.4,
due to the complexity of the photoemission process in solids the quantitative
analysis of the experimental data is often performed under the assumption of
the independent-particle picture and of the sudden approximation (i.e., disre-
garding the many-body interactions as well as the relaxation of the system
during the photoemission itself). The problem is further simplified within the
so-called three-step model [Fig. 1.3(a)], in which the photoemission event is
decomposed in three independent steps: optical excitation between the initial
and final bulk Bloch eigenstates, travel of the excited electron to the sur-
face, and escape of the photoelectron into vacuum after transmission through
the surface potential barrier. This is the most common approach, in particu-
lar when photoemission spectroscopy is used as a tool to map the electronic
band structure of solids. However, from the quantum-mechanical point of view
photoemission should not be described in terms of several independent events
but rather as a one-step process [Fig. 1.3(b)]: in terms of an optical transition

3 Parts of the following sections have been readapted from our previous
publications, Ref. 1 and 6.
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Fig. 1.3. Pictorial representation of three-step and one-step model description of
the photoemission process (from Ref. 22).

(with probability given by Eq. 1.10) between initial and final states consisting
of many-body wave functions that obey appropriate boundary conditions at
the surface of the solid. In particular (see Fig. 1.4), the initial state should
be one of the possible N -electron eigenstates of the semi-infinite crystal, and
the final state must be one of the eigenstates of the ionized (N−1)-electron
semi-infinite crystal; the latter has also to include a component consisting of
a propagating plane-wave in vacuum (to account for the escaping photoelec-
tron) with a finite amplitude inside the crystal (to provide some overlap with
the initial state). Furthermore, as expressed by Eq. 1.10, which represents a
complete one-step description of the problem, in order for an electron to be
photoemitted in vacuum not only there must be a finite overlap between the
amplitude of initial and final states, but the following energy and momentum
conservation laws for the impinging photon and the N -electron system as a
whole must also be obeyed:

EN
f − EN

i = hν (1.1)

kN
f − kN

i = khν . (1.2)

Here the indexes i and f refer to initial and final state, respectively, and khν

is the momentum of the incoming photon. Note that, in the following, when
proceeding with the more detailed analysis of the photoemission process as
well as its application to the study of the momentum-dependent electronic
structure of solids (in terms of both conventional band mapping as well as
many-body effects), we will mainly restrict ourselves to the context of the
three-step model and the sudden approximation.
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Fig. 1.4. Initial (left) and final (right) eigenstates for the semi-infinite crystal. Left:
(a) surface resonance; (b) surface Shockley state situated in a gap of the bulk band
structure; (c) bulk Bloch state. Right: (d) surface resonance; (e) in gap evanescent
state; (f) bulk Bloch final state (from Ref. 40).

1.3 Kinematics of photoemission

The energetics and kinematics of the photoemission process are shown in
Fig.1.5 and 1.6, while the geometry of an ARPES experiment is sketched in
Fig.1.7(a). A beam of monochromatized radiation supplied either by a gas-
discharge lamp, a UV laser, or a synchrotron beamline is incident on a sample
(which has to be a properly aligned single crystal in order to perform angle-
or, equivalently,momentum-resolved measurements). As a result, electrons are
emitted by photoelectric effect and escape into the vacuum in all directions. By
collecting the photoelectrons with an electron energy analyzer characterized
by a finite acceptance angle, one measures their kinetic energy Ekin for a given
emission direction. This way, the wave vector or momentum K=p/h̄ of the
photoelectrons in vacuum is also completely determined: its modulus is given
by K =

√
2mEkin/h̄ and its components parallel (K|| =Kxûx + Kyûy) and

perpendicular (K⊥ =Kzûz) to the sample surface are obtained in terms of
the polar (ϑ) and azimuthal (φ) emission angles defined by the experiment:

Kx =
1

h̄

√
2mEkin sinϑ cosφ (1.3)

Ky =
1

h̄

√
2mEkin sinϑ sinφ (1.4)

Kz =
1

h̄

√
2mEkin cosϑ . (1.5)

The goal is then to deduce the electronic dispersion relations E(k) for the
solid left behind, i.e. the relation between binding energy EB and momentum
k for the electrons propagating inside the solid, starting from Ekin and K
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Fig. 1.5. Energetics of the photoemission process (from Ref. [22]). The electron
energy distribution produced by the incoming photons, and measured as a function of
the kinetic energy Ekin of the photoelectrons (right), is more conveniently expressed
in terms of the binding energy EB (left) when one refers to the density of states in
the solid (EB=0 at EF ).

measured for the photoelectrons in vacuum. In order to do that, one has to
exploit the total energy and momentum conservation laws (Eq. 1.1 and 1.2,
respectively). Within the non-interacting electron picture, it is particularly
straightforward to take advantage of the energy conservation law and relate,
as pictorially described in Fig. 1.5, the kinetic energy of the photoelectron to
the binding energy EB of the electronic-state inside the solid:

Ekin = hν − ϕ− |EB| . (1.6)

More complex, as we will discuss below, is to gain full knowledge of the crystal
electronic momentum k. Note, however, that the photon momentum can be
neglected in Eq. 1.2 at the low photon energies most often used in ARPES ex-
periments (hν<100 eV), as it is much smaller than the typical Brillouin-zone
dimension 2π/a of a solid (see Sec. 1.7 for more details). As shown in Fig. 1.6,
within the three-step model description (see also Sec. 1.4), the optical transi-
tion between the bulk initial and final states can be described by a vertical
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transition in the reduced-zone scheme (kf−ki=0), or equivalently by a transi-
tion between momentum-space points connected by a reciprocal-lattice vector
G in the extended-zone scheme (kf−ki=G). In regard to Eq. 1.1 and 1.2 and
the deeper meaning of the reciprocal-lattice vector G note that, as empha-
sized by Mahan in his seminal paper on the theory of photoemission in simple
metals [41], “in a nearly-free-electron gas, optical absorption may be viewed
as a two-step process. The absorption of the photon provides the electron with
the additional energy it needs to get to the excited state. The crystal potential
imparts to the electron the additional momentum it needs to reach the excited
state. This momentum comes in multiples of the reciprocal-lattice vectors G.
So in a reduced zone picture, the transitions are vertical in wave-vector space.
But in photoemission, it is more useful to think in an extended-zone scheme.”
On the contrary in an infinite crystal with no periodic potential (i.e., a truly
free-electron gas scenario lacking of any periodic momentum structure), no
k-conserving transition is possible in the limit khν=0, as one cannot go from
an initial to a final state along the same unperturbed free-electron parabola
without an external source of momentum. In other words, direct transitions
are prevented because of the lack of appropriate final states (as opposed to
the periodic case of Fig. 1.6). Then again the problem would be quite differ-
ent if the surface was more realistically taken into account, as in a one-step
model description of a semi-infinite crystal. In fact, while the surface does not
perturb the translational symmetry in the x-y plane and k∥ is conserved to
within a reciprocal lattice vector G∥, due to the abrupt potential change along
the z axis the perpendicular momentum k⊥ is not conserved across the sam-
ple surface (i.e., k⊥ is not a good quantum number except than deeply into
the solid, contrary to k||). Thus, the surface can play a direct role in momen-
tum conservation, delivering the necessary momentum for indirect transitions
even in absence of the crystal potential (i.e., the so-called surface photoelectric
effect; see also Eq. 1.10 and the related discussion).

Reverting to the three-step model direct-transition description of Fig. 1.6,
the transmission through the sample surface is obtained by matching the bulk
Bloch eigenstates inside the sample to free-electron plane waves in vacuum.
Because of the translational symmetry in the x-y plane across the surface,
from these matching conditions it follows that the parallel component of the
electron momentum is conserved in the process:

|k∥| = |K∥| =
1

h̄

√
2mEkin · sinϑ (1.7)

where k∥ is the component parallel to the surface of the electron crystal mo-
mentum in the extended-zone scheme (upon going to larger ϑ angles, one
actually probes electrons with k∥ lying in higher-order Brillouin zones; by
subtracting the corresponding reciprocal-lattice vector G∥, the reduced elec-
tron crystal momentum in the first Brillouin zone is obtained). As for the
determination of k⊥, which is not conserved but is also needed in order to
map the electronic dispersion E(k) versus the total crystal wave vector k,
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a different approach is required. As a matter of fact, several specific exper-
imental methods for absolute three dimensional band mapping have been
developed [22, 42, 43]; however, these are rather complex and require addi-
tional and/or complementary experimental data. Alternatively, the value of
k⊥ can be determined if some a priori assumption is made for the dispersion
of the electron final states involved in the photoemission process; in particu-
lar, one can either use the results of band structure calculations, or adopt a
nearly-free-electron description for the final bulk Bloch states:

Ef (k) =
h̄2k2

2m
− |E0| =

h̄2(k∥
2 + k⊥

2)

2m
− |E0| (1.8)

where once again the electron momenta are defined in the extended-zone
scheme, and E0 corresponds to the bottom of the valence band as indicated
in Fig. 1.6 (note that both E0 and Ef are referenced to the Fermi energy EF ,
while Ekin is referenced to the vacuum level Ev). Because Ef =Ekin+ϕ and
h̄2k2

∥/2m = Ekin sin
2 ϑ, which follow from Fig. 1.6 and Eq. 1.7, one obtains

from Eq. 1.8:

k⊥ =
1

h̄

√
2m(Ekin cos2 ϑ+ V0) . (1.9)

Here V0 = |E0|+ϕ is the inner potential, which corresponds to the energy of
the bottom of the valence band referenced to vacuum level Ev. From Eq. 1.9
and the measured values of Ekin and ϑ, if V0 is also known, one can then
obtain the corresponding value of k⊥. As for the determination of V0, three
methods are generally used: (i) optimize the agreement between theoretical
and experimental band mapping for the occupied electronic state; (ii) set V0
equal to the theoretical zero of the muffin tin potential used in band structure
calculations; (iii) infer V0 from the experimentally observed periodicity of the
dispersion E(k⊥). The latter is actually the most convenient method as the
experiment can be realized by simply detecting the photoelectrons emitted
along the surface normal (i.e., K∥ = 0) while varying the incident photon
energy and, in turn, the energy Ekin of the photoelectrons and thus Kz (see
Eq. 1.5). Note that the nearly-free electron approximation for the final states
is expected to work well for materials in which the Fermi surface has a simple
spherical (free-electron-like) topology such as in the alkali metals, and for high-
energy final states in which case the crystal potential is a small perturbation
(eventually the final-state bands become so closely spaced in energy as to
form a continuum, and the details of the final states become unimportant).
However this approximation is also often used for more complicated systems,
even if the initial states are not free electron-like.

A particular case in which the uncertainty in k⊥ is less relevant is that of
the low-dimensional systems characterized by an anisotropic electronic struc-
ture and, in particular, a negligible dispersion along the z axis [i.e., the surface
normal, see Fig. 1.7(a)]. The electronic dispersion is then almost exclusively
determined by k∥ (as in the case of many transition metal oxides, such as for
example the two-dimensional copper oxide superconductors [1]). As a result,
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one can map out in detail the electronic dispersion relations E(k) simply by
tracking, as a function of K∥, the energy position of the peaks detected in
the ARPES spectra for different take-off angles [as in Fig. 1.7(b), where both
direct and inverse photoemission spectra for a single band dispersing through
the Fermi energy EF are shown]. Furthermore, as an additional bonus asso-
ciated with the lack of a z dispersion, one can directly identify the width of
the photoemission peaks as the lifetime of the photohole [45], which contains
information on the intrinsic correlation effects of the system and is formally de-
scribed by the imaginary part of the electron self energy (see Sec. 1.5). On the
contrary, in 3D systems the linewidth contains contributions from both photo-
hole and photoelectron lifetimes, with the latter reflecting final state scattering
processes and thus the finite probing depth; as a consequence, isolating the
intrinsic many-body effects becomes a much more complicated problem.

1.4 Three-step model and sudden approximation

To develop a formal description of the photoemission process, one has to
calculate the transition probability wfi for an optical excitation between the
N -electron ground state ΨN

i and one of the possible final states ΨN
f . This can

be approximated by Fermi’s golden rule:

wfi =
2π

h̄
|⟨ΨN

f |Hint|ΨN
i ⟩|2δ(EN

f − EN
i − hν) (1.10)

where EN
i =EN−1

i −Ek
B and EN

f =EN−1
f +Ekin are the initial and final-state

energies of the N -particle system (Ek
B is the binding energy of the photoelec-

tron with kinetic energy Ekin and momentum k). The interaction with the
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photon is treated as a perturbation given by:

Hint =
e

2mc
(A·p+ p·A) =

e

mc
A·p (1.11)

where p is the electronic momentum operator and A is the electromagnetic
vector potential (note that the gauge Φ=0 was chosen for the scalar potential
Φ, and the quadratic term in A was dropped because in the linear optical
regime it is typically negligible with respect to the linear terms). In Eq. 1.11
we also made use of the commutator relation [p,A]=−ih̄∇·A and dipole ap-
proximation [i.e., A constant over atomic dimensions and therefore ∇·A=0,
which holds in the ultraviolet]. Although this is a routinely used approxima-
tion, it should be noted that∇·Amight become important at the surface where
the electromagnetic fields may have a strong spatial dependence. This surface
photoemission contribution, which is proportional to (ε − 1) where ε is the
medium dielectric function, can interfere with the bulk contribution resulting
in asymmetric lineshapes for the bulk direct-transition peaks [19, 46–48]. At
this point, a more rigorous approach is to proceed with the so-called one-step
model [Fig. 1.3(b)], in which photon absorption, electron removal, and electron
detection are treated as a single coherent process [41,49–62]. In this case bulk,
surface, and vacuum have to be included in the Hamiltonian describing the
crystal, which implies that not only bulk states have to be considered but also
surface and evanescent states, as well as surface resonances (see Fig. 1.4). Note
that, under the assumption ∇·A=0, from Eq. 1.11 and the commutation re-
lation [H0,p]= ih̄∇V (where H0=p2/2m+V is the unperturbed Hamiltonian
of the semi-infinite crystal) it follows that the matrix elements appearing in
Eq. 1.10 are proportional to ⟨ΨN

f |A·∇V |ΨN
i ⟩. This explicitly shows that for a

true free-electron like system it would be impossible to satisfy simultaneously
energy and momentum conservation laws inside the material because there
∇V =0. The only region where electrons could be photoexcited is at the sur-
face where ∂V/∂z ̸= 0, which gives rise to the so-called surface photoelectric
effect. However, due to the complexity of the one-step model, photoemission
data are usually discussed within the three-step model [Fig. 1.3(a)], which, al-
though purely phenomenological, has proven to be rather successful [53,63,64].
Within this approach, the photoemission process is subdivided into three in-
dependent and sequential steps:

(i) Optical excitation of the electron in the bulk .
(ii) Travel of the excited electron to the surface.
(iii) Escape of the photoelectron into vacuum.

The total photoemission intensity is then given by the product of three in-
dependent terms: the total probability for the optical transition, the scatter-
ing probability for the travelling electrons, and the transmission probability
through the surface potential barrier. Step (i) contains all the information
about the intrinsic electronic structure of the material and will be discussed
in detail below. Step (ii) can be described in terms of an effective mean free
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Fig. 1.7. (a) Geometry of an ARPES experiment; the emission direction of the
photoelectron is specified by the polar (ϑ) and azimuthal (φ) angles. Momentum re-
solved one-electron removal and addition spectra for: (b) a non-interacting electron
system (with a single energy band dispersing across the Fermi level); (c) an inter-
acting Fermi liquid system. The corresponding ground-state (T =0 K) momentum
distribution function n(k) is also shown. (c) Bottom right: photoelectron spectrum
of gaseous hydrogen (black) and the ARPES spectrum of solid hydrogen developed
from the gaseous one (red). Adapted from Ref. 1.

path, proportional to the probability that the excited electron will reach the
surface without scattering (i.e, with no change in energy and momentum). The
inelastic scattering processes, which determine the surface sensitivity of pho-
toemission (see Sec. 1.7), give rise to a continuous background in the spectra
which is usually ignored or subtracted. Step (iii) is described by a transmission
probability through the surface, which depends on the energy of the excited
electron and the material work function ϕ (in order to have any finite escape
probability the condition h̄2k2⊥/2m≥|E0|+ϕ must be satisfied).

In evaluating step (i), and therefore the photoemission intensity in terms
of the transition probability wfi, it would be convenient to factorize the wave-
functions in Eq. 1.10 into photoelectron and (N−1)-electron terms, as we have
done for the corresponding energies. The final state ΨN

f then becomes:

ΨN
f = Aϕkf Ψ

N−1
f (1.12)

where A is an antisymmetric operator that properly antisymmetrizes the N -
electron wavefunction so that the Pauli principle is satisfied, ϕkf is the wave-

function of the photoelectron with momentum k, and ΨN−1
f is the final state

wavefunction of the (N−1)-electron system left behind, which can be cho-
sen as an excited state with eigenfunction ΨN−1

m and energy EN−1
m . The total

transition probability is then given by the sum over all possible excited states
m. This derivation, which originated from writing the transition probabil-
ity using Fermi’s golden rule, Eq. 1.10, implicitly assumes the validity of the
so-called sudden approximation, which is extensively used in many-body cal-
culations of the photoemission spectra from interacting electron systems, and
is in principle applicable only to high kinetic-energy electrons. In this limit,
the photoemission process is assumed to be sudden, with no post-collisional
interaction between the photoelectron and the system left behind (in other
words, an electron is instantaneously removed and the effective potential of
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the system changes discontinuously at that instant)4. Note, however, that the
sudden approximation is inappropriate for low kinetic energy photoelectrons,
which may need longer than the system response time to escape into vacuum.
In this case, the so-called adiabatic limit, one can no longer use the instanta-
neous transition amplitudes wfi and the detailed screening of photoelectron
and photohole has to be taken into account [66].

For the initial state, let us first assume for simplicity that ΨN
i is a single

Slater determinant (i.e., Hartree-Fock formalism), so that we can write it as
the product of a one-electron orbital ϕki and an (N−1)-particle term:

ΨN
i = Aϕki Ψ

N−1
i . (1.13)

More generally, however, ΨN−1
i should be expressed as ΨN−1

i = ckΨ
N
i , where

ck is the annihilation operator for an electron with momentum k. This also
shows that ΨN−1

i is not an eigenstate of the (N−1) particle Hamiltonian, but
is just what remains of the N -particle wavefunction after having pulled out
one electron. At this point, we can write the matrix elements in Eq. 1.10 as:

⟨ΨN
f |Hint|ΨN

i ⟩=⟨ϕkf |Hint|ϕki ⟩⟨ΨN−1
m |ΨN−1

i ⟩ (1.14)

where ⟨ϕkf |Hint|ϕki ⟩ ≡ Mk
f,i is the one-electron dipole matrix element, and

the second term is the (N −1)-electron overlap integral. Here, we replaced
ΨN−1
f with an eigenstate ΨN−1

m , as discussed above. The total photoemis-
sion intensity measured as a function of Ekin at a momentum k, namely
I(k, Ekin)=

∑
f,i wf,i, is then proportional to:∑
f,i

|Mk
f,i|2

∑
m

|cm,i|2δ(Ekin+E
N−1
m − EN

i −hν) (1.15)

where |cm,i|2 = |⟨ΨN−1
m |ΨN−1

i ⟩|2 is the probability that the removal of an
electron from state i will leave the (N − 1)-particle system in the excited
state m. From here we see that, if ΨN−1

i =ΨN−1
m0

for one particular m=m0,
the corresponding |cm0,i|2 will be unity and all the others cm,i zero; in this
case, if also Mk

f,i ̸= 0, the ARPES spectra will be given by a delta function

at the Hartree-Fock orbital energy Ek
B = −εbk, as shown in Fig. 1.7(b) (i.e.,

non-interacting particle picture). In the strongly correlated systems, however,
many of the |cm,i|2 terms will be different from zero because the removal of
the photoelectron results in a strong change of the system effective potential
and, in turn, ΨN−1

i will have an overlap with many of the eigenstates ΨN−1
m .

Therefore, the ARPES spectra will not consist of single delta functions but
will show a main line and several satellites according to the number of excited
states m created in the process [Fig. 1.7(c)].

4 In particular, this implies that the wavefunction for the (N-1)-electron system at
time t1 (when the interaction Hint is switched on) remains unchanged when Hint

is switched off at t2, thus allowing to use Fermi’s golden rule and the instantaneous
transition probabilities wfi. This approximation is only valid when t2− t1 ≪ h̄

∆E
,

∆E being the characteristic energy separation of the (N-1) system [65].
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1.5 One-particle spectral function

In the discussion of photoemission on solids, and in particular on the correlated
electron systems in which many |cm,i|2 in Eq. 1.15 are different from zero, the
most powerful and commonly used approach is based on the Green’s function
formalism [67–72]. In this context, the propagation of a single electron in
a many-body system is described by the time-ordered one-electron Green’s
function G(k, t − t′), which can be interpreted as the probability amplitude
that an electron added to the system in a Bloch state with momentum k at a
time zero will still be in the same state after a time |t−t′|. By taking the Fourier
transform, G(k, t−t′) can be expressed in energy-momentum representation
resulting in G(k, ω)=G+(k, ω)+G−(k, ω), where G+(k, ω) and G−(k, ω) are
the one-electron addition and removal Green’s function, respectively. At T =0:

G±(k, ω) =
∑
m

|⟨ΨN±1
m |c±k |ΨN

i ⟩|2

ω − EN±1
m + EN

i ± iη
(1.16)

where the operator c+k = c†kσ (c−k = ckσ) creates (annihilates) an electron
with energy ω, momentum k, and spin σ in the N -particle initial state ΨN

i ;
the summation runs over all possible (N±1)-particle eigenstates ΨN±1

m with
eigenvalues EN±1

m , and η is a positive infinitesimal (note also that from here
on we will take h̄ = 1). In the limit η → 0+ one can make use of the
identity (x±iη)−1=P(1/x)∓iπδ(x), where P denotes the principle value,
to obtain the one-particle spectral function A(k, ω) =A+(k, ω)+A−(k, ω) =
−(1/π)ImG(k, ω), with:

A±(k, ω)=
∑
m

|⟨ΨN±1
m |c±k |Ψ

N
i ⟩|2δ(ω−EN±1

m +EN
i ) (1.17)

and G(k, ω)=G+(k, ω)+[G−(k, ω)]∗, which defines the retarded Green’s func-
tion. Note that A−(k, ω) and A+(k, ω) define the one-electron removal and
addition spectra which one can probe with direct and inverse photoemission,
respectively. This is evidenced, for the direct case, by the comparison between
the expression for A−(k, ω) and Eq. 1.15 for the photoemission intensity (note
that in the latter ΨN−1

i =ckΨ
N
i and the energetics of the photoemission pro-

cess has been explicitly accounted for). Finite temperatures effect can be taken
into account by extending the Green’s function formalism just introduced to
T ̸= 0 (see, e.g., Ref. [70]). In the latter case, by invoking once again the
sudden approximation, the intensity measured in an ARPES experiment on
a 2D single-band system can be conveniently written as:

I(k, ω) = I0(k, ν,A)f(ω)A(k, ω) (1.18)

where k = k∥ is the in-plane electron momentum, ω is the electron energy
with respect to the Fermi level, and I0(k, ν,A) is proportional to the squared
one-electron matrix element |Mk

f,i|2 and therefore depends on the electron
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momentum, and on the energy and polarization of the incoming photon. We
also introduced the Fermi function f(ω)=(eω/kBT +1)−1, which accounts for
the fact that direct photoemission probes only the occupied electronic states.
Note that in Eq. 1.18 we neglected the presence of any extrinsic background
and the broadening due to the energy and momentum resolution, which how-
ever have to be carefully considered when performing a quantitative analysis
of the ARPES spectra (see Sec. 1.6 and Eq. 1.25).

The corrections to the Green’s function originating from electron-electron
correlations can be conveniently expressed in terms of the electron proper self
energy Σ(k, ω)=Σ′(k, ω)+iΣ′′(k, ω). Its real and imaginary parts contain all
the information on the energy renormalization and lifetime, respectively, of
an electron with band energy εbk and momentum k propagating in a many-
body system. The Green’s and spectral functions expressed in terms of the
self energy are then given by:

G(k, ω) =
1

ω − εbk −Σ(k, ω)
(1.19)

A(k, ω) = − 1

π

Σ′′(k, ω)

[ω − εbk −Σ′(k, ω)]2 + [Σ′′(k, ω)]2
. (1.20)

Because G(t, t′) is a linear response function to an external perturbation,
the real and imaginary parts of its Fourier transform G(k, ω) have to satisfy
causality and, therefore, also Kramers-Kronig relations. This implies that if
the full A(k, ω) =−(1/π)ImG(k, ω) is available from photoemission and in-
verse photoemission, one can calculate ReG(k, ω) and then obtain both the
real and imaginary parts of the self energy directly from Eq. 1.19. However,
due to the lack of high-quality inverse photoemission data, this analysis is
usually performed using only ARPES spectra by taking advantage of certain
approximations (such as, e.g., particle-hole symmetry near EF ; for a more
detailed discussion, see also Ref. 73,74 and references therein).

In general, the exact calculation of Σ(k, ω) and, in turn, of A(k, ω) is
an extremely difficult task. In the following, as an example we will briefly
consider the interacting FL case [75–77]. Let us start from the trivialΣ(k, ω)=
0 non-interacting case. The N -particle eigenfunction ΨN is a single Slater
determinant and we always end up in a single eigenstate when removing or
adding an electron with momentum k. Therefore, G(k, ω) = 1/(ω−εbk± iη)
has only one pole for each k, and A(k, ω)= δ(ω−εbk) consists of a single line
at the band energy εbk [as shown in Fig. 1.7(b)]. In this case, the occupation

numbers nkσ = c
†
kσckσ are good quantum numbers and for a metallic system

the momentum distribution [i.e., the expectation value n(k) ≡ ⟨nkσ⟩, quite
generally independent of the spin σ for nonmagnetic systems], is characterized
by a sudden drop from 1 to 0 at k = kF [Fig. 1.7(b), top], which defines a
sharp Fermi surface. If we now switch on the electron-electron correlation
adiabatically, (so that the system remains at equilibrium), any particle added
into a Bloch state has a certain probability of being scattered out of it by a
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collision with another electron, leaving the system in an excited state in which
additional electron-hole pairs have been created. The momentum distribution
n(k) will now show a discontinuity smaller than 1 at kF and a finite occupation
probability for k>kF even at T =0 [Fig. 1.7(c), top]. As long as n(k) shows a
finite discontinuity Zk>0 at k=kF , we can describe the correlated Fermi sea
in terms of well defined quasiparticles, i.e. electrons dressed with a manifold of
excited states, which are characterized by a pole structure similar to the one
of the non-interacting system but with renormalized energy εqk, mass m∗, and
a finite lifetime τk=1/Γk. In other words, the properties of a FL are similar to
those of a free electron gas with damped quasiparticles. As the bare-electron
character of the quasiparticle or pole strength (also called coherence factor)
is Zk< 1 and the total spectral weight must be conserved (see Eq. 1.23), we
can separate G(k, ω) and A(k, ω) into a coherent pole part and an incoherent
smooth part without poles [78]:

G(k, ω) =
Zk

ω − εqk + iΓk
+Gincoh (1.21)

A(k, ω) = Zk
Γk/π

(ω − εqk)
2 + Γ 2

k

+Aincoh (1.22)

where Zk = (1− ∂Σ′

∂ω )−1, εqk = Zk(ε
b
k+Σ

′), Γk = Zk|Σ′′|, and the self energy
and its derivatives are evaluated at ω = εqk. It should be emphasized that
the FL description is valid only in proximity to the Fermi surface and rests
on the condition εqk−µ≫ |Σ′′| for small (ω−µ) and (k−kF ). Furthermore,
Γk∝ [(πkBT )

2+(εqk−µ)2] for a FL system in two or more dimensions [78,79],
although additional logarithmic corrections should be included in the two-
dimensional case [80]. By comparing the electron removal and addition spec-
tra for a FL of quasiparticles with those of a non-interacting electron sys-
tem (in the lattice periodic potential), the effect of the self-energy correction
becomes evident [see Fig. 1.7(c) and 1.7(b), respectively]. The quasiparticle
peak has now a finite lifetime and width (due to Σ′′), but sharpens rapidly as
it emerges from the broad incoherent component and approaches the Fermi
level, where the lifetime is infinite corresponding to a well defined quasiparti-
cle [note that the coherent and incoherent part of A(k, ω) represent the main
line and satellite structure discussed in the previous section and shown in
Fig. 1.7(c), bottom right]. Furthermore, the peak position is shifted with re-
spect to the bare band energy εbk (due to Σ′): as the quasiparticle mass is
larger than the band mass because of the dressing (m∗ >m), the total dis-
persion (or bandwidth) will be smaller (|εqk| < |εbk|). We note here, as later
discussed in more detail in relation to Fig. 1.13, that the continuum of excita-
tions described by the incoherent part of A(k, ω) in general does still retain a
k and ω-dependent structure with spectral weight distributed predominately
along the non-interacting bare band; this, however, is usually characterized
by remarkably broad lineshapes [see e.g. Fig. 1.12(c) and 1.15] and should not
be mistaken for a quasiparticle dispersion.
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Among the general properties of the spectral function there are also several
sum rules. A fundamental one, which in discussing the FL model was implicitly
used to state

∫
dωAcoh=Zk and

∫
dωAincoh=1−Zk (where Acoh and Aincoh

refer to coherent and incoherent parts of the spectral function), is:∫ +∞

−∞
dωA(k, ω) = 1 (1.23)

which reminds us that A(k, ω) describes the probability of removing/adding
an electron with momentum k and energy ω to a many-body system. However,
as it also requires the knowledge of the electron addition part of the spectral
function, it is not so useful in the analysis of ARPES data, unless particle-hole
symmetry holds. A sum rule more relevant to this task is:∫ +∞

−∞
dωf(ω)A(k, ω) = n(k) (1.24)

which solely relates the one-electron removal spectrum to the momentum dis-
tribution n(k). When electronic correlations are important and the occupa-
tion numbers are no longer good quantum numbers, the discontinuity at kF

is reduced (as discussed for the FL case) but a drop in n(k) is usually still
observable even for strong correlations [81]. By tracking the loci of steepest
descent of the experimentally determined n(k) in k-space, i.e., maxima in
|∇k n(k)|, one may thus identify the Fermi surface even in those correlated
systems exhibiting particularly complex ARPES features. However, great care
is necessary in making use of Eq. 1.24 because the integral of Eq. 1.18 does not
give just n(k) but rather I0(k, ν,A)n(k) [1,82]. A more detailed discussion of
this point, with specific relevance to undoped Mott insulating cuprates, can
be found in Ref. 83,84.

1.6 Matrix elements and finite resolution effects

As discussed in the previous section and summarized by Eq. 1.18, ARPES
directly probes the one-particle spectral function A(k, ω). However, in ex-
tracting quantitative information from the experiment, not only the effects of
the matrix element term I0(k, ν,A) have to be taken into account, but also
the finite experimental resolution and the extrinsic continuous background
due to the secondaries (those electrons which escape from the solid after hav-
ing suffered inelastic scattering events and, therefore, with a reduced Ekin).
The latter two effects may be explicitly accounted for by considering a more
realistic expression for the photocurrent I(k, ω):∫

dω̃dk̃
[
I0(k̃,ν,A)f(ω̃)A(k̃,ω̃)R(ω−ω̃)Q(k−k̃)

]
+B (1.25)
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Fig. 1.8. (a) Mirror plane emission from a dx2−y2 orbital. (b) Sketch of the optical
transition between atomic orbitals with different angular momenta (the harmonic
oscillator wavefunctions are here used for simplicity) and free electron wavefunctions
with different kinetic energies (from Ref. 6). (c) Calculated photon energy depen-
dence of the photoionization cross-sections for Cu 3d and O 2p atomic levels.

which consists of the convolution of Eq. 1.18 with energy (R) and momentum
(Q) resolution functions [R is typically a Gaussian, Q may be more com-
plicated], and of the background correction B. Of the several possible forms
for the background function B [22], two are more frequently used: (i) the
step-edge background (with three parameters for height, energy position, and
width of the step-edge), which reproduces the background observed all the
way to EF in an unoccupied region of momentum space; (ii) the Shirley back-
ground BSh(ω) ∝

∫ µ

ω
dω′P (ω′), which allows to extract from the measured

photocurrent I(ω) =P (ω)+cShBSh(ω) the contribution P (ω) of the unscat-
tered electrons (with only the parameter cSh [85]).

Let us now very briefly illustrate the effect of the matrix element term
I0(k, ν,A)∝ |Mk

f,i|2, which is responsible for the dependence of the photoe-
mission data on photon energy and experimental geometry, and may even
result in complete suppression of the intensity [86–89]. By using the commu-
tation relation h̄p/m=−i[x, H], we can write |Mk

f,i|2∝|⟨ϕkf |ε·x|ϕki ⟩|2, where
ε is a unit vector along the polarization direction of the vector potential A.
As in Fig. 1.8(a), let us consider photoemission from a dx2−y2 orbital, with
the detector located in the mirror plane (when the detector is out of the mir-
ror plane, the problem is more complicated because of the lack of an overall
well defined even/odd symmetry). In order to have non vanishing photoemis-
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sion intensity, the whole integrand in the overlap integral must be an even
function under reflection with respect to the mirror plane. Because odd par-
ity final states would be zero everywhere on the mirror plane and therefore
also at the detector, the final state wavefunction ϕkf itself must be even. In
particular, at the detector the photoelectron is described by an even parity
plane-wave state eik·r with momentum in the mirror plane and fronts orthog-
onal to it [88]. In turn, this implies that (ε·x)|ϕki ⟩ must be even. In the case
depicted in Fig. 1.8(a), where |ϕki ⟩ is also even, the photoemission process is
symmetry allowed for A even or in-plane (i.e., εp·x depends only on in-plane
coordinates and is therefore even under reflection with respect to the plane)
and forbidden for A odd or normal to the mirror plane (i.e., εs·x is odd as it
depends on normal-to-the-plane coordinates). For a generic initial state of ei-
ther even or odd symmetry with respect to the mirror plane, the polarization
conditions resulting in an overall even matrix element can be summarized as:⟨

ϕkf
∣∣A·p

∣∣ϕki ⟩{ϕki even ⟨+|+ |+⟩ ⇒ A even

ϕki odd ⟨+| − |−⟩ ⇒ A odd
(1.26)

In order to discuss the photon energy dependence, from Eq. 1.11 and by
considering a plane wave eikr for the photoelectron at the detector, one may
more conveniently write |Mk

f,i|2 ∝ |(ε ·k)⟨ϕki |eikr⟩|2. The overlap integral, as
sketched in Fig. 1.8(b), strongly depends on the details of the initial state
wavefunction (peak position of the radial part and its oscillating character),
and on the wavelength of the outgoing plane wave. Upon increasing the photon
energy, both Ekin and k increase, and Mk

f,i changes in a fashion which is not
necessarily monotonic (see Fig. 1.8(c), for the Cu 3d and the O 2p atomic
case). In fact, the photoionization cross section is usually characterized by
one minimum in free atoms, the so-called Cooper minimum [90], and a series
of them in solids [91].

1.7 State-of-the-art photoemission

The configuration of a generic angle-resolved photoemission beamline is shown
in Fig. 1.9. A beam of radiation peaked about a specific photon energy is
produced in a wiggler or an undulator (these so-called ‘insertion devices’ are
the straight sections of the electron storage ring where radiation is produced).
The light is then monochromatized at the desired photon energy by a grating
monochromator, and focused on the sample. Alternatively, a UV-laser or a
gas-discharge lamp can be used as a radiation source (the latter has to be
properly monochromatized, to avoid complications due to the presence of
different satellites, and refocused to a small spot size, essential for high angular
resolution). However, synchrotron radiation offers important advantages: it
covers a wide spectral range (from the visible to the X-ray region) with an
intense and highly polarized continuous spectrum; lasers and discharge lamps
provide only a few resonance lines at discrete energies.
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Fig. 1.9. (Color). Beamline equipped with a plane grating monochromator and a
2D position-sensitive electron analyzer (from Ref. 1).

Photoemitted electrons are then collected by the electron analyzer, where
kinetic energy and emission angle are determined (the whole system is in
ultra-high vacuum at pressures lower than 5×10−11 torr). A conventional
hemispherical analyzer consists of a multi-element electrostatic input lens,
a hemispherical deflector with entrance and exit slits, and an electron detec-
tor (i.e., a channeltron or a multi-channel detector). The heart of the analyzer
is the deflector which consists of two concentric hemispheres (of radius R1 and
R2). These are kept at a potential difference ∆V , so that only those electrons
reaching the entrance slit with kinetic energy within a narrow range centered
at Epass=e∆V/(R1/R2−R2/R1) will pass through this hemispherical capac-
itor, thus reaching the exit slit and then the detector. This way it is possible
to measure the kinetic energy of the photoelectrons with an energy resolution
given by ∆Ea=Epass(w/R0+α

2/4), where R0=(R1+R2)/2, w is the width of
the entrance slit, and α is the acceptance angle. The role of the electrostatic
lens is that of decelerating and focusing the photoelectrons onto the entrance
slit. By scanning the lens retarding potential one can effectively record the
photoemission intensity versus the photoelectron kinetic energy.

One of the innovative characteristics of a state-of-the-art analyzer is the
two-dimensional position-sensitive detector consisting of two micro-channel
plates and a phosphor plate in series, followed by a CCD camera. In this case,
no exit slit is required: the electrons, spread apart along the Y axis of the de-
tector (Fig. 1.9) as a function of their kinetic energy due to the travel through
the hemispherical capacitor, are detected simultaneously [in other words, a
range of electron energies is dispersed over one dimension of the detector
and can be measured in parallel; scanning the lens voltage is in principle no
longer necessary, at least for narrow energy windows (a few percent of Epass)].
Furthermore, contrary to a conventional electron spectrometer in which the
momentum information is averaged over all the photoelectrons within the ac-
ceptance angle (typically ±1◦), state-of-the-art 2D position-sensitive electron
analyzers can be operated in angle-resolved mode, which provides energy-
momentum information not only at a single k-point but along an extended
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Fig. 1.10. (Color). 3D plot of the ARPES intensity from Sr2RuO4 versus energy
(ω) and momentum (kx and ky), in the first Brillouin zone. The top plane shows the
Fermi surface A(k, ω = 0), while the side cuts show the spectral function along cer-
tain high-symmetry directions. The multiple features that are visible in dispersion
and Fermi surface, in addition to the three Ru-t2g bands expected for this material,
arise from near-surface structural instabilities, and associated structural reconstruc-
tion and band-folding [92]. Note that these data differ from those in Fig. 1.17, which
were measured under different conditions intended to suppress the contribution from
the surface top-most layers and are thus representative of the bulk of Sr2RuO4 [93].

cut in k-space. In particular, the photoelectrons within a variable angular
window as wide as ∼30◦ along the direction defined by the analyzer entrance
slit can be focused on different X positions on the detector (Fig. 1.9). It is
thus possible to measure multiple energy distribution curves simultaneously
for different photoelectron angles, obtaining a 2D snapshot of energy versus
momentum. Such snapshots, for differing sample orientations, can be com-
bined to form a 3D volume (Fig. 1.10), and then cut at constant energy to
generate a material’s Fermi surface when done at ω=EF on a metal, or along
any k-space path to generate a band mapping versus energy and momentum.
State-of-the-art spectrometers typically allow for energy and angular resolu-
tions of less than approximately 1 meV and 0.1 − 0.2◦, respectively. Taking
as example the transition metal oxides and in particular the cuprate super-
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superconducting gap in the heavy fermion system CeRu2 (from Ref. 94).

conductors (for which 2π/a ≃ 1.6 Å−1), one can see from Eq. 1.7 that 0.2◦

corresponds to ∼0.5% of the Brillouin zone size, for the 21.2 eV photons of
the He-Iα line typically used in ARPES systems equipped with a gas-discharge
lamp. In the case of a beamline, to estimate the total energy resolution one has
to take into account also the ∆Em of the monochromator, which can be ad-
justed with entrance and exit slits (the ultimate resolution a monochromator
can deliver is given by its resolving power R=E/∆Em and in general worsens
upon increasing the photon energy). The current record in energy resolution
is of 360 µeV obtained on an ARPES spectrometer equipped with a Scienta
R4000 electron analyzer and a UV laser operating in continuous-wave mode
at ∼6.994 eV (see Fig. 1.11). One should note however that while the utiliza-
tion of UV lasers allows superior resolutions, it also leads to some important
shortcomings: (i) access to a limited region of k-space, often smaller than the
first Brillouin zone, due to the reduced kinetic energy of photoelectrons; (ii)
extreme sensitivity to final state effects, with the detailed energy-momentum
structure of the final states becoming important, since at low photon ener-
gies one cannot reach the high-energy continuum (the kinematic constraints
of energy and momentum conservation may be satisfied only for a limited set
of momenta, and as a result the photoemission intensity might be completely
suppressed in certain regions of the Brillouin zone); (iii) breakdown of the
sudden approximation, in which case the photoemission intensity would all
be found in the “0-0” transition between the initial and final ground states
(see discussion of Fig. 1.7 and especially 1.12), providing no information on the
excited states of the system left behind, and in turn on the strength and na-
ture of the underlying many-body interactions (the crossover from sudden to
adiabatic regime in TMOs is still being debated, see e.g. Ref. 95, and depends
on the specific relaxation processes of a given material).
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1.8 Physics of correlations - the ARPES perspective

The sensitivity of ARPES to correlation effects is deeply connected to its cor-
responding observable, which is the one-particle spectral function previously
introduced in Sec. 1.5. This physical quantity conveys information not only on
the single-particle excitations, but also on the many-body final states which
can be reached in the photoemission process. However, the distinction between
single-particle and many-body features in A(k, ω) at the experimental level is
often subtle. In order to disentangle the nature of the underlying excitations
it is common practice to decompose the spectral function into a coherent,
Acoh(k, ω), and an incoherent part, Aincoh(k, ω), as explained in Sec. 1.5.

Whereas in a purely non-interacting system all single-electron excitations
are coherent, since they are insensitive to the behavior of the other particles,
things can be quite different when electron-electron interactions, and therefore
quantum-mechanical correlation effects, are turned on. For these reasons, the
redistribution of spectral weight between the coherent and incoherent part
in A(k, ω) is commonly regarded as a distinct signature of correlations at
work. In particular, the integrated spectral intensity of the coherent part, the
quasiparticle strength Zk that can be extracted from ARPES, is a relatively
direct measure of the correlated behavior of a given system. Following its
definition given in Eq. 1.19, Zk can vary from 1 (non-interacting case) to 0
(strongly correlated case, no coherent states can be excited).

In the following subsections we will explain how the concept of correlation
already emerges in simple molecular-like systems (i.e., few-body) and evolves
into the complex structures found in solid-state materials (i.e., many-body).
Different types of correlation effects will be reviewed, with particular emphasis
on those stemming from electron-phonon and electron-electron interactions.
We will then discuss different aspects of correlated electron behavior in a
few selected transition metal oxides, and show how correlations evolve with
– and to some degree can be controlled by – the external control parameters
introduced in Sec. 1.1 and Fig. 1.1.

1.8.1 Origin of correlations in photoelectron spectroscopy

In general, the connection between the one-particle spectral function and cor-
relations is not immediately obvious and might look mysterious to the reader.
It is useful and instructive to clarify what the photoelectron spectrum for
a correlated system looks like, beginning with an example from molecular
physics. In Fig. 1.12 we show the photoionization spectrum of the molecular
gas H2 which, at variance with a simpler atomic gas (e.g., He or Ne), exhibits
a fine structure made of a series of peaks almost evenly separated in energy.
The underlying physical explanation for these spectral features relates to the
Franck-Condon principle, which is explained in Fig. 1.12(a). This is best un-
derstood if we write down the equation for the photoionization cross section,
which will involve: (i) an initial state wavefunction ψi, assumed to be the
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Fig. 1.12. (Color). (a) Franck-Condon effect and its relation to the single-particle
spectral function in atomic physics. (b) Photoionization spectrum of gaseous H2

(from Ref. 96), featuring a comb of lines corresponding to the various accessible ex-
cited (vibrational) final states of the H+

2 system left behind; the red line is an abstrac-
tion to what would happen in solid-state H2 (from Ref. 97). (c) A(k=(π/2, π/2), ω)
from Ca2CuO2Cl2, showing the broad incoherent Zhang-Rice peak, with the sharp
Sr2RuO4 lineshape superimposed for comparison (from Ref. 98).

ground state for the neutral molecule; and (ii) a final state wavefunction ψf ,
which can be a linear combination of eigenstates for the ionized, positively
charged molecule H+

2 . The possible eigenstates we consider here can be sepa-
rated into an electronic part (the hydrogen-like 1s orbital ϕ1s) and a nuclear
part, which in a diatomic molecule like H2 can be vibrationally excited. The
latter is given, to a good approximation, by one of the eigenfunctions of the
harmonic oscillator, ϕn(Req), which depend on the interatomic equilibrium
distance Req. Combining together electronic and nuclear (i.e., vibrational)
components we obtain a basis set for the molecular Hamiltonian in the form
ψn=ϕ1sϕn(Req). We can then use this set of functions in the matrix element
governing the photoionization process:

IH2→H+
2
∝

∑
m

⟨ψH+
2

m |p ·A|ψH2
n=0⟩ ∝

∑
m

⟨ϕk,m|p ·A|ϕ1s⟩⟨ϕm(R
H+

2
eq )|ϕ0(RH2

eq )⟩ .

(1.27)
Here p ·A is the dipole interaction operator and the initial state is the ground
state for H2, or ψ

H2

GS=ψn=0. The term ⟨ϕk,m|p ·A|ϕ1s⟩=Mk
m is the matrix el-

ement previously introduced in Sec. 1.6, representing the overlap between the
initial-state electronic wavefunction ϕ1s and the final state plane-wave ϕk,m. It

is readily seen that, if R
H+

2
eq =RH2

eq , then IH2→H+
2
∝
∑

m δm,0 and the photoion-

ization spectrum would be composed of a single peak, corresponding to the
“0-0” transition between the initial and final ground states. In reality, the neu-
tral and ionized molecule will see a different charge distribution (thus leading
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to a different electrostatic potential), due to the missing Coulomb interaction
term for the 1s electrons in the Hamiltonian for H+

2 . As a consequence, the
molecule before and after photoexcitation will have a different interatomic
equilibrium distance, and many of the terms in Eq. 1.27 will be different from
zero resulting in multiple transitions in the experimental spectrum [corre-
sponding to the vertical excitations in Fig. 1.12(a) and to the various peaks in
Fig. 1.12(b)]. The lowest energy peak [labeled “0-0” in Fig. 1.12(b)] still cor-
responds to a transition into the ground state of the ionized molecule, but it
only contains a fraction of the total photoemission intensity, or spectral weight.
At this point it is useful to introduce an alternative definition (but equivalent
to the one given in Sec. 1.5) of coherent and incoherent spectral weight:

• The coherent spectral weight is a measure of the probability to reach the
ground state of the final-state Hamiltonian (HH+

2
) in the photoexcitation

process. In experimental terms, it is represented by the total area of the
0-0 transition shown in Fig. 1.12(b).

• The incoherent spectral weight is a measure the probability to leave the
ionized system in any of its excited states. It can be therefore calculated
from the integrated intensity of all the 0-m (m ̸= 0) peaks in the ionization
spectrum, as shown in Fig. 1.12(b).

In solid-state, many-body systems, both molecular vibrations and elec-
tronic levels are no longer discrete but have an energy dispersion (turning
into phonons and electronic bands, respectively). This is what gives a con-
tinuum of excitations when many body interactions are at play, as opposed
to the sharp excitation lines of the H2 case. However these concepts remain
valid, although we shall now restate them within a many-body framework:

• The coherent spectral weight corresponds to the probability of reaching,
via the electron addition/removal process (∆N=±1, where N is the initial
number of electrons), the many-body ground-state for the (N ± 1)-particle
Hamiltonian (H∓

N±1).
• The incoherent spectral weight gives the cumulative probability that the

(N ± 1)-particle system is instead left in an excited state.

A photoelectron spectrum for a solid-state many-body system will look
like the dashed curve in Fig. 1.12(b), due to the multitude of final states that
can be reached as a result of the photoemission process. The well-defined
features characterizing A(k, ω) in the molecular case will then broaden out
into a continuum of excitations. This was experimentally found to occur in
the strongly-coupled cuprate material Ca2CuO2Cl2 [see Fig. 1.12(c)], which
will be discussed in more detail in the next section. We also note that for the
incoherent part of the spectral function two cases are possible in a solid:

1. Aincoh(k, ω) is composed of gapless many-body excitations, e.g. creation
of electron-hole pairs in a metal; this typically produces an asymmetric
lineshape, as in the case of the Doniach-Sunjic model [99].
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2. Aincoh(k, ω) originates from gapped excitations, e.g. coupling between
electrons and optical phonons; in this case the coherent part is well sep-
arated from the incoherent tail, and a quasiparticle peak can be more
properly identified.

What we have just seen for the H2 molecule stems from the interaction
between the electronic and the nuclear degrees of freedom. In the absence of
such interplay there would be no fine structure in the corresponding spectral
function. This is a very important concept, which is deeply connected to the
idea of correlations. The Hamiltonian of a given (few-body or many-body)
system, in the absence of interaction terms, can be decomposed into a sum
of single particle terms (non-interacting case). Correspondingly, the system
is unperturbed by the addition or removal of a particle during the photoex-
citation process; due to the orthonormality of the involved eigenstates, the
(N ± 1)-system left behind will not be found in a superposition of excited
states but rather left unperturbed in its ground state (at zero temperature).
Single-particle spectroscopy would then detect a single transition (e.g., the
0-0 peak in Fig. 1.12) and the spectral weight is fully coherent. Conversely,
when the electron-nucleus and/or electron-lattice interaction are switched on,
addition/removal of a single electron perturbs the molecular/lattice potential
to some degree and this can trigger creation or annihilation of one or multiple
vibrational modes in the process. As we will see in the following section for
electron-phonon coupling in solids, the effect at the level of spectral function
can be very different according to the strength of the interaction.

1.8.2 Electron-phonon correlations in solids: the polaron

The interaction of the mobile charges with the static ionic lattice is what un-
derlies the formation of electronic bands in all crystalline materials. However,
the lattice is never really static and its low-energy excitations, the phonons,
are present even at very low temperatures. As they hop around in the lattice,
electrons can interact (through the ionic Coulomb potential) with – or be-
come “dressed” by – phonons, thereby slowing their quantum motion. These
new composite entities, known as polarons, represent the true quasiparticles of
the coupled electron-lattice system: the properties of the “bare” electrons, in
primis bandwidth and mass, are now renormalized in a fashion which directly
depends on the strength of the electron-phonon coupling. Here we show two ex-
amples of polaronic physics, one experimental and the other theoretical, which
exhibit different features but relate to the same underlying interactions.
The first case is that of Ca2CuO2Cl2 (CCOC). This compound is the un-
doped parent compound of the high-Tc superconducting cuprates, where the
low-energy physics originates from the hybridized Cu 3d –O 2p states of the
CuO2 planes. In Fig. 1.12(c), the ARPES spectrum of CCOC at k=(π/2, π/2)
is shown [98]. This value of electron momentum corresponds to the lowest
ionization state of the Zhang-Rice singlet (ZRS) band [100]. The latter is a
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Fig. 1.13. (Color). A(k, ω) for the Holstein model, showing the quasiparticle band
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εbk, and the renormalized quasiparticle band εqk, respectively. The Fermi energy EF

has been set at the top of the quasiparticle band (from Ref. 74).

2-particle state, made of a combination of one O 2p and one Cu 3d hole in
a total spin-zero state (singlet). Hence the nature of such a state is intrinsi-
cally correlated, and cannot be described within a single-particle framework.
While this feature was originally recognized as the quasiparticle pole of the
same Cu–O band that is also found in the doped compounds [101], the Gaus-
sian lineshape, together with the broad linewidth (Γ ∼ 0.5 eV) suggest that
this feature might instead be identified as the incoherent part of the spec-
tral function. It follows that the spectral function has no actual quasiparticle
weight Zk, because the intensity of the lowest energy excitation [the “0-0”
line marked by the “B” arrow in Fig. 1.12(c)] approaches zero.

While the previous example illustrates a case where the strong electron-
boson interaction entirely washes away the coherent spectral weight, in dif-
ferent physical systems it is possible to have sizeable weight in the quasi-
particle pole. This is illustrated with the second example discussed here, the
one-dimensional (1D) Holstein model [74], shown in Fig. 1.13. This model is
represented by the following Hamiltonian:

H1D
Holstein =

∑
k
εbkc

†
kck +Ω

∑
Q
b†QbQ +

g√
n

∑
k,Q

c†k−Qck(b
†
Q + b−Q) . (1.28)

The evolution of the associated spectral function as a function of the di-
mensionless electron-phonon coupling parameter λ = g2/2tΩ (in this calcu-
lation Ω = 50meV) is shown in Fig. 1.13. The case λ = 0 (no coupling),
shown in Fig. 1.13(a), yields a spectral function which exactly follows the
bare electronic band εbk (indicated by the black dashed line in Fig. 1.13), i.e.
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A(k, ω)=δ(ω − εbk), where the δ-function is here broadened into a Lorentzian
for numerical purposes. Already in the small coupling limit λ=0.1 a quasipar-
ticle band branches off the original band, with a k-dependent spectral weight
[see Fig. 1.13(b)]. The latter is substantially redistributed, with the spectral
weight at binding energies higher than the quasiparticle band belonging to the
incoherent part of the spectral function, which forms a continuum of many-
body excitations for EB >Ω. As the electron-phonon coupling is further in-
creased, it can be noted from Fig. 1.13(c,d) how: (i) there is a progressive
renormalization of the quasiparticle band (εqk), which implies a reduction in
the total bandwidth and a change in the slope ∂εqk/∂k (quasiparticle velocity);
(ii) the spectral weight is redistributed between the quasiparticle band εqk and
the incoherent features at higher binding energy, corresponding to a photohole
copropagating with, or “dressed” by, one or multiple phonons. In the strong-
coupling regime λ=10, the quasiparticle band and its n-phonon replicas are
nondispersive (i.e., corresponding to a diverging quasiparticle mass), and the
coherent spectral weight Zk has almost completely vanished [Fig. 1.13(d)].

After having discussed quasiparticle renormalization due to electron-
phonon coupling, in the following we will turn our focus onto electron-electron
interaction effects, which are particularly pronounced in 3d -TMOs, and dom-
inate the low-energy electrodynamics in these systems.

1.8.3 Doping-controlled coherence: the cuprates

As anticipated, copper-based oxide superconductors exhibit a rich phase di-
agram, encompassing a variety of unconventional phases (Fig. 1.1), which in-
clude: high-temperature superconductivity, Mott insulating behavior, pseudo-
gap phase, strange metal (non-conventional Fermi liquid), and possibly elec-
tronic liquid crystal (nematic phase), to name a few. In particular, their re-
markable peculiarity lies in the possibility of realizing these different phases
simply by controlling the charge carriers doped into the CuO2 planes.

A manifestation of the underlying correlated nature of these materials
can be found in the doping-dependent evolution of coherent behavior in
the low-energy electrodynamics. This is the case of the ARPES results on
YBa2Cu3O6+x (YBCO), one of the most studied within the family of cuprates
owing to its superior purity. In this and similar materials, hole-doping is usu-
ally controlled at the chemical level, by tuning the stoichiometric ratio between
the O and Cu content. As for the study of the low-energy electronic structure
by ARPES, this has been hampered by the lack of a natural cleavage plan
and especially the polarity of the material, which leads to the the self doping
of the cleaved surfaces [102–104]. As a result, while the bulk of YBCO cannot
be doped beyond 20% by varying the oxygen content, the surfaces appear
to be overdoped up to almost 40% (the highest overdoping value reached on
any cuprate [104]). An approach devised to resolve this problem involves the
control of the carrier concentration at the surface [103, 104] by in-situ potas-
sium deposition on the cleaved crystals, which enables the investigation of the
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Fig. 1.14. (Color). (a,b): ARPES dispersion in YBCO, along the nodal cut [Γ →
(π, π)] for p=0.24 and 0.06, respectively, showing the lack of bonding-antibonding
(B-AB) bilayer splitting and the spectral function being mostly incoherent for p=
0.06. (c) A(k=kF,N , ω) as a function of doping for the bonding Cu-O band, showing
the progressive suppression of the quasiparticle peak. (d) ZN as determined from
the B-AB splitting and the spectral-weight ratio SWR (see text). Also shown are
guides-to-the-eye and the 2p/(p+ 1) Gutzwiller projection relation (from Ref. 104).

surface electronic structure all the way from the overdoped (p∼ 0.37) to the
very underdoped region of the phase diagram (p∼0.02).
Concurrent with a modification of the Fermi surface, which evolves from
large hole-like cylinders to Fermi arcs [103, 104], there is also a pronounced
change in the ARPES spectral lineshape [see Fig. 1.14(c), where the corre-
sponding energy distribution curves have been extracted from the ARPES
maps in panels (a,b), for k = kF ]. In particular, two major effects are ob-
served going from the over- to the under-doped surface: (i) the progressive
loss of the nodal coherent weight with no quasiparticle peak being detected
at p= 0.02 [Fig. 1.14(c)], accompanied by an increase in the incoherent tail,
and consistent with conservation of the total spectral weight; (ii) the sup-

pression of the nodal bilayer splitting ∆ϵB,AB
N shown in the ARPES intensity

maps of Fig. 1.14(a,b) [an even more pronounced suppression can be observed
at the antinodes], which goes hand-in-hand with the redistribution of spec-
tral weight from the coherent to the incoherent part of the spectral func-
tion. Since correlation effects suppress hopping within and between planes
in a similar fashion, the renormalization of the measured bilayer splitting
with respect to the prediction of density functional theory can be used as
an equivalent measure of the coherent weight Zk =∆ϵB,AB

N /2tLDA
⊥ (N), with

tLDA
⊥ (N)≃ 120meV. This is a more quantitative and more accurate method
than estimating the spectral weight ratio between quasiparticle and many-
body continuum, SWR=

∫ −∞
EF

I(kF,N , ω)dω/
∫ −∞
0.8eV

I(kF,N , ω)dω, since in this
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Fig. 1.15. (Color). (a) ARPES image plot of the Mn-eg valence band along the
(0, 0)-(π, π) direction in La1.2Sr1.8Mn2O7 (T =20K); note the quasiparticle band εqk
branching off the bare band near EF , in analogy to the case of the Holstein model
[Fig. 1.13(b)]. (b,c) Stack of low-energy EDCs for T = 15 and 120K, respectively,
emphasizing the emergence of the quasiparticle peak below TC (from Ref. 105).

case the coherent and incoherent parts of A(k, ω) are not well separated. Using
both methods, it is possible to observe a suppression of the coherent weight as
one goes underdoped, with Zk vanishing around p=0.1 − 0.15 [Fig. 1.14(d)],
consistent with the observation that the underdoped (p< 0.1) ARPES spec-
tra are mostly incoherent, A(k, ω)∼Aincoh(k, ω). The proximity of the Mott
phase (p=0), with its strongly correlated behavior, is believed to be the rea-
son underlying the loss of coherent behavior as hole doping is progressively
reduced, and forces a departure from the Fermi liquid description much more
rapid than predicted by the mean field Gutzwiller projection Z=2p/(p+ 1).

1.8.4 Temperature-controlled coherence: the manganites

Another family of 3d -based oxides characterized by a rich phase diagram is
that of the manganites. These materials, which exhibit the fascinating phe-
nomenon known as colossal magnetoresistance, have been extensively stud-
ied by ARPES [105–111]. In one of these compounds, La1.2Sr1.8Mn2O7, the
high temperature spectra (T > 120K) do not qualitatively differ from those
seen for undoped cuprates, previously presented in Fig. 1.12(c). As shown in
Fig. 1.15(d), there is no spectral weight at the Fermi energy, and the lowest-
energy excitation is a broad peak dispersing between -1 and -0.5 eV [105].
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This finding suggests we are again looking at a strongly correlated system,
where all the spectral weight is pushed into a broad and incoherent structure
away from EF . Surprisingly, when the temperature is lowered through the
Curie value TC ∼ 120K, a sharp feature emerges at the chemical potential,
with an intensity progressively increasing as the sample is cooled down to
15K [see Fig. 1.15(a,b,c) and related insets]. This is a remarkable example
of how temperature can lead to a transfer of spectral weight from Aincoh to
Acoh, in this case associated with the ferromagnetic transition occurring at
TC . Note the large ratio Aincoh/Acoh, i.e. a incoherent-to-coherent transition,
and the subsequently small Zk: this is an indication of the fact that we are
still in a regime where electronic correlations are very strong, similar to the
case of undoped and underdoped cuprates and, as we will see in the following
section, also of cobaltates [112]. In addition, it is important to note how the
coherent spectral weight does not necessarily appear throughout the entire
Brillouin zone, but might instead be limited to a reduced momentum range,
where electronic excitations can propagate in a coherent manner.

1.8.5 Probing coherence with polarization: the cobaltates

As discussed in the previous sections, the distinction between coherent and
incoherent parts of A(k, ω) – and thus the determination of the quasiparticle
strength Zk – although conceptually well defined, is often not easy to estimate
from ARPES experiments. An additional complication is encountered when-
ever more overlapping bands contribute to the low energy electronic structure
in the same region of momentum. In such instances, there is one characteristic
of the ARPES technique which can be exploited, namely the explicit depen-
dence on light polarization of the photoemission intensity from a band of spe-
cific symmetry, as a result of matrix-element effects (see Sec. 1.6). For a single
band system, changing any of the experimental parameters would change the
ARPES intensity as a whole, thus preserving the shape of the spectral func-
tion and in particular the ratio between Acoh(k, ω) and Aincoh(k, ω), since
these terms are weighted by an identical matrix element. The situation is
very different in a multiband system since, whenever the quasiparticle peaks
and the many-body continua originate from different single-particle bands,
they will be characterized by a different overall symmetry. In this case, one
may use the polarization dependence of the single-particle matrix elements to
disentangle the different spectral functions contributing to the total ARPES
intensity. This approach, shown in Fig. 1.16 and discussed in more detail in
Ref. 113, has been used in the study of misfit cobaltates, a family of layered
compounds, where the low-energy electronic states reside in the CoO2 planes.
These compounds all have 3 bands crossing the chemical potential and, while
detecting Acoh is relatively simple due to its sharpness in proximity to EF ,
evaluating the ratio between Acoh and Aincoh is a much more complicated
task due the the overlap of contributions stemming from different orbitals.
Two close-lying bands, of respectively a1g and eg

′ orbital character, have
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Fig. 1.16. (Color). (a) top panel: A(k = kF , ω) from the misfit cobaltate
[Bi2Ba2O4][CoO2] for two different polarizations - red curve is linear horizon-
tal (LH), blue curve is linear vertical (LV); (a) bottom panel: linear dichroism
ALD=ALH −ALV . (b) momentum-dependence of ALD near k=kF (from Ref. 113).
(c) temperature-dependence of ALD [114].

different symmetries and can thus be selected using polarization, as described
in Sec. 1.6 [see top panel in Fig. 1.16(a)]. Taking the difference between spec-
tra measured with different polarization (linear dichroism), one can isolate
the full spectral function for the a1g band [Fig. 1.16(a), bottom panel]. The
momentum- and temperature-dependence are then displayed in Fig. 1.16(b)
and (c), respectively, evidencing a very similar behavior to the one found in
the manganites [114]. With this approach is thus possible to track the quasi-
particle weight Zk as a function of temperature and doping, even in multiband
systems and in those regions of momentum space where bands overlap.

1.8.6 Correlated relativistic metals: spin-orbit coupled 4d-TMOs

Stepping down one row in the periodic table we find the 4d transition metal
oxides. Based on simple arguments, one would expect correlations to play
a less important role in these materials. This is due to the larger spatial
extent of the 4d orbitals, as compared to the 3d case, which at the same
time favors delocalization (larger W ) and reduces on-site electron-electron
interactions (smaller U ), thus positioning these systems away from the Mott
criterion. Following such intuitive expectations, one indeed finds an evident
suppression of correlation effects, which is accompanied by the emergence of
coherent charge dynamics even in undoped (i.e., stoichiometric) compounds.
However, marking the difference from 3d oxides, a new important term has to
be considered for 4d materials: the spin-orbit (SO) interaction. The associated
energy scale ζSO becomes increasingly important for heavier elements (with an
approximate ζSO∝Z4 dependence on the atomic number Z ), which then have
to be treated within a relativistic framework. Whereas these effects are largely
neglected in cuprates, where ζSO(Cu

2+)∼20− 30meV, they are important in
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Fig. 1.17. (Color). (a-c): Stack of experimental ARPES EDCs in Sr2RuO4, along
the high-symmetry direction Γ → X (a), with LDA (b) and LDA+SO (c) predictions
for the Fermi surface (from Ref. 93,115). (d-f): same as (a-c), for the case of Sr2RhO4

(from Ref. 115–117).

ruthenates and rhodates (and even more in 5d materials, as we will see later),
where ζSO(Ru

4+) = 161meV and ζSO(Rh
4+) = 191meV [118]. Furthermore,

in 4d systems correlation effects continue to play a role, hence these systems
are commonly classified as correlated relativistic metals.

ARPES results on two of the most studied 4d -based oxides, namely
Sr2RuO4 and Sr2RhO4 [93, 115–117] are shown in Fig. 1.17, together with
predictions for the Fermi surface from density functional theory in the local
density approximation (LDA). While one indeed finds intense and sharp quasi-
particle peaks in the energy distribution curves (EDCs) – and consequently
large values of Zk supporting the strongly reduced relevance of many-body
correlations – the matching between experimental and predicted Fermi sur-
faces is not perfect for Sr2RuO4 and is actually poor for the even more covalent
Sr2RhO4. Experiments and theory are almost fully reconciled when SO cou-
pling is included in the single-particle methods used to describe the low-energy
electronic structure of 4d -oxides; on the other hand, the experimental bands
still appear renormalized with respect to the calculations, by approximately a
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Fig. 1.18. (Color). (a) ARPES data along high-symmetry directions within the first
Brillouin zone (EDCs at high-symmetry points are marked in red), showing no spec-
tral weight at EF (blue dashed line). (b,c): density-functional calculations within
the LDA and LDA+SO approximations, respectively. (d,e) Possible low-energy sce-
narios in a 5d5 system: (d) U=0, ζSO=0, yielding an uncorrelated metallic ground
state; (e) U > W , ζSO = 0, yielding a S = 1/2 Mott-insulating state; (f) U = 0,
ζSO∼W , giving a spin-orbit coupled metal; (g) ζSO∼W , U∼WJeff=1/2, producing
a Jeff =1/2 Mott-insulating ground state (from Ref. 121).

factor of 2 similar to overdoped cuprates [104,119], which indicates that elec-
tronic correlations cannot be completely neglected. This ultimately qualifies
Sr2RuO4 and Sr2RhO4 as correlated relativistic metals.

1.8.7 Mott criterion and spin-orbit coupling: 5d TMOs

Based on the reduced correlation effects observed in 4d -oxides, a progressive
evolution into an even less correlated physics in 5d materials would be ex-
pected. For this reason, the discovery of an insulating state in Sr2IrO4, a
compound isostructural and chemically similar to cuprates and ruthenates,
came as a big surprise. The first resistivity profiles to be measured in this
iridate [120] showed an insulating behavior, as also later confirmed by opti-
cal spectroscopy [121]. ARPES data on this material, showing the low-energy
dispersions of the Ir 5d -t2g states, consistently found no spectral weight at
EF [see Fig. 1.18(a)]. Furthermore, and most importantly, there is a signif-
icant disagreement between experimental data and LDA(+SO) calculations
that, as displayed in Fig. 1.18(b,c), would predict the system to be metallic,
with a Fermi surface corresponding to a large Luttinger counting. This is a
situation reminiscent of the 3d -oxides, where fulfilment of the Mott criterion
would yield a correlated S=1/2 insulating state at variance with band theory.
This novel underlying physics emerges because of the prominent role of the
SO interaction, whose strength is ζSO∼500meV for Ir4+, and which now acts
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in concert with the other relevant energy scales (W and U ). In the atomic
limit, the action of SO would splits the otherwise degenerate t2g orbitals into
two submanifolds with the total angular momentum J2

eff =L
2
eff +S

2, and its
projection Jz

eff , as new quantum numbers. Within such a framework, local
correlations would then split the Jeff = 1/2 manifold into lower and upper
Hubbard bands thus opening a Mott gap, provided U >WJeff=1/2. This mech-
anism, sketched in Fig. 1.18(f,g), yields a novel type of correlated ground state,
the so-called relativistic Mott-insulator . One should note that the validity of
such pseudospin-1/2 approximation is still debated, and alternative mecha-
nisms are being discussed. Also, recent works have questioned the Mott-like
nature of the electronic ground state in Sr2IrO4 and rather suggested that
this system could be closer to a Slater-type (thus, non-correlated) insula-
tor [122, 123]. In this latter case, the insulating gap would result from the
onset of long-range magnetic ordering and not strong electron correlations
of the Mott type, i.e. the metal-insulator transition would coincide with the
magnetic ordering transition. In the next and last section, we will present an
unambiguous experimental realization of relativistic Mott physics in iridates,
and will highlight similarities and differences with respect to Sr2IrO4.

1.8.8 Relativistic Mott insulating behavior: Na2IrO3

After the original discovery and proposal of a Mott-insulating state in Sr2IrO4,
new systems were predicted, both on theoretical and experimental grounds, to
exhibit similar physics. Na2IrO3 is one of these compounds, which has been the
subject of early theoretical speculations [125–127], and was later synthesized
and found to behave in a correlated manner. Early transport and magnetiza-
tion measurements [128] provided evidence for an insulating behavior charac-
terized by local spin moments, therefore pointing to a Mott scenario (charge
localization). Further spectroscopic evidence for such a scenario has been pro-
vided by a combination of ARPES, optics and LDA calculations [124]. ARPES
data for the Ir 5d -t2g bands from a pristine surface are shown in Fig. 1.19(a),
and highlight a few primary aspects: no spectral weight is found at EF and the
band dispersions are surprisingly narrow (W ∼0.15 eV). Moreover, the energy
distribution curves are very broad, with no evidence of sharp quasiparticles,
perhaps as a result of a vanishing Zk, unlike the case of Sr2IrO4. While this
is unexpected for a system possessing the more extended 5d orbitals, it also
brings us closer to fulfilment of the Mott criterion U >W and therefore to a
correlated, Mott-Hubbard-like physics. LDA predicts this system to be metal-
lic with a density of states peaking at EF [see Fig. 1.19(b,e)]. The disagreement
with the ARPES data implies that the charge dynamics cannot be explained
within a simple band-model. When also accounting for the SO interaction,
it is found that this is sufficient to turn the system insulating within the
LDA calculations [Fig. 1.19(c)], although with a 0-gap at EF [Fig. 1.19(f)]. It
is only with the further inclusion of the Coulomb term U that the correct
gap size ∆gap ∼ 340meV, as found from optics and ARPES with potassium
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evaporation [124], can finally be reproduced [see Fig. 1.19(d,g), where values
of U =3 eV and JH =0.6 eV have been used]. The presence of a sizeable on-
site electron-electron interaction also explains the presence of local moments
well above the long-range antiferromagnetic ordering temperature TN ∼13 K
(i.e., in the paramagnetic phase). These findings reveal that the expectation
of correlation-free physics in selected 5d oxides is in general unrealistic, and
that spin-orbit coupling has a primary role in making these systems unstable
against possibly small correlation effects (in this case, the on-site Coulomb in-
teraction). This indicates that many-body and spin-orbit interactions cannot
be fully disentangled, thus conclusively establishing Na2IrO3 – and possibly
other members of the iridates family – as relativistic Mott insulators: i.e., a
novel type of correlated insulator in which many-body (Coulomb) and rela-
tivistic (spin-orbit) effects have to be treated on an equal footing.
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